Nanotechnology Now

Our NanoNews Digest Sponsors





Heifer International

Wikipedia Affiliate Button


android tablet pc

Home > Press > Drug patch treatment sees new breakthrough

Lissett Bickford, an assistant professor with the Virginia Tech - Wake Forest School of Biomedical Engineering, worked on this technology as a post doctoral researcher.

Credit: Virginia Tech
Lissett Bickford, an assistant professor with the Virginia Tech - Wake Forest School of Biomedical Engineering, worked on this technology as a post doctoral researcher.

Credit: Virginia Tech

Abstract:
An assistant professor with the Virginia Tech - Wake Forest School of Biomedical Engineering has developed a flexible microneedle patch that allows drugs to be delivered directly and fully through the skin. The new patch can quicken drug delivery time while cutting waste, and can likely minimize side-effects in some cases, notable in vaccinations and cancer therapy.

Drug patch treatment sees new breakthrough

Blacksburg, VA | Posted on September 7th, 2013

News of the delivery technology was published in a recent issue of the scientific journal, Advanced Materials.

Leading development of the flexible patch was Lissett Bickford, now an assistant professor and researcher of biomedical engineering and the mechanical engineering, both part of the Virginia Tech College of Engineering. Work on the technology was completed while Bickford was a post-doctoral research associate at the University of North Carolina Chapel Hill.

Microneedle patch technology used on the skin has existed for several years, each patch containing an array of hundreds of micron-sized needles that pierce the skin and dissolve, delivering embedded therapeutics. However, because of their rigid chemical makeup, the patches proved difficult in fully piercing into the skin, creating a waste of drug material and a slowed delivery time. Additionally, the patches also have been difficult to produce in bulk; typical fabrication procedures have required centrifugation.

Bickford, with her research team, including Chapel Hill graduate student Katherine A. Moga, were able to develop a new flexible microneedle patch that forms to the skin directly - think a regular household bandage - and then fully pierces the skin and dissolves. Bickford said the softer, more malleable and water-soluble material also allows for more precise control over the shape, size, and composition of the patch, with little to no waste.

The nanoparticle, micro-molding patch is based on Particle Replication In Non-wetting Templates (PRINT for short) technology, developed by University of North Carolina researcher and professor Joseph DeSimone. Unlike other methods for making these patches, the new technology allows for quicker and greater wide-scale production, reducing related costs.

###

Research and work on the new patch was funded by the National Institutes of Health and Chapel Hill's University Cancer Research Fund. Advanced Materials wrote of the breakthrough in its July issue.

Bickford earned her bachelor's degree in mechanical engineering from Texas A&M University in 1998, followed by a master's degree in biomedical engineering from The University of Texas Austin inn 2001; and a doctoral degree in bioengineering from Rice University in 2010.

At Virginia Tech, she is director and principal investigator of the Translational Oncology & Nano/Pharmacoengineering Laboratory where she focuses on the development of cost-effective tools for cancer diagnosis and treatment.

####

For more information, please click here

Contacts:
Steven Mackay

540-231-4787

Copyright © Virginia Tech

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

First Observation of Electronic Structure in Ag-Rh Alloy Nanoparticles Having Hydrogen Absorbing: Storage Property –Attempting to solve the mystery of why Ag-Rh alloy nanoparticles have a similar property to Pd– October 30th, 2014

Iranians Present Model to Predict Photocatalytic Process in Removal of Pollutants October 30th, 2014

Production of Biocompatible Polymers in Iran October 30th, 2014

Amorphous Coordination Polymer Particles as alternative to classical nanoplatforms for nanomedicine October 30th, 2014

Govt.-Legislation/Regulation/Funding/Policy

'Electronic skin' could improve early breast cancer detection October 29th, 2014

New solar power material converts 90 percent of captured light into heat: SunShot Project aims to make solar cost competitive October 29th, 2014

Tiny carbon nanotube pores make big impact October 29th, 2014

Microrockets fueled by water neutralize chemical and biological warfare agents October 29th, 2014

Nanomedicine

Production of Biocompatible Polymers in Iran October 30th, 2014

Amorphous Coordination Polymer Particles as alternative to classical nanoplatforms for nanomedicine October 30th, 2014

'Electronic skin' could improve early breast cancer detection October 29th, 2014

Tiny carbon nanotube pores make big impact October 29th, 2014

Discoveries

First Observation of Electronic Structure in Ag-Rh Alloy Nanoparticles Having Hydrogen Absorbing: Storage Property –Attempting to solve the mystery of why Ag-Rh alloy nanoparticles have a similar property to Pd– October 30th, 2014

Iranians Present Model to Predict Photocatalytic Process in Removal of Pollutants October 30th, 2014

Production of Biocompatible Polymers in Iran October 30th, 2014

Amorphous Coordination Polymer Particles as alternative to classical nanoplatforms for nanomedicine October 30th, 2014

Announcements

First Observation of Electronic Structure in Ag-Rh Alloy Nanoparticles Having Hydrogen Absorbing: Storage Property –Attempting to solve the mystery of why Ag-Rh alloy nanoparticles have a similar property to Pd– October 30th, 2014

Iranians Present Model to Predict Photocatalytic Process in Removal of Pollutants October 30th, 2014

Production of Biocompatible Polymers in Iran October 30th, 2014

Amorphous Coordination Polymer Particles as alternative to classical nanoplatforms for nanomedicine October 30th, 2014

Grants/Awards/Scholarships/Gifts/Contests/Honors/Records

Microrockets fueled by water neutralize chemical and biological warfare agents October 29th, 2014

New nanodevice to improve cancer treatment monitoring October 27th, 2014

Special UO microscope captures defects in nanotubes: University of Oregon chemists provide a detailed view of traps that disrupt energy flow, possibly pointing toward improved charge-carrying devices October 21st, 2014

Crystallizing the DNA nanotechnology dream: Scientists have designed the first large DNA crystals with precisely prescribed depths and complex 3D features, which could create revolutionary nanodevices October 20th, 2014

NanoNews-Digest
The latest news from around the world, FREE





  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More














ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2014 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE