Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > Creating a 'window' to the brain: University of California, Riverside researchers develop novel transparent skull implant that could provide new treatment options for disorders such as brain cancer and traumatic brain injury

This is an illustrated cross section of the head that shows how the transparent skull implant works.

Credit: Mayo Kodera
This is an illustrated cross section of the head that shows how the transparent skull implant works.

Credit: Mayo Kodera

Abstract:
A team of University of California, Riverside researchers have developed a novel transparent skull implant that literally provides a "window to the brain", which they hope will eventually open new treatment options for patients with life-threatening neurological disorders, such as brain cancer and traumatic brain injury.

Creating a 'window' to the brain: University of California, Riverside researchers develop novel transparent skull implant that could provide new treatment options for disorders such as brain cancer and traumatic brain injury

Riverside, CA | Posted on September 3rd, 2013

The team's implant is made of the same ceramic material currently used in hip implants and dental crowns, yttria-stabilized zirconia (YSZ). However, the key difference is that their material has been processed in a unique way to make it transparent.

Since YSZ has already proven itself to be well-tolerated by the body in other applications, the team's advancement now allows use of YSZ as a permanent window through which doctors can aim laser-based treatments for the brain, importantly, without having to perform repeated craniectomies, which involve removing a portion of the skull to access the brain.

The work also dovetails with President Obama's recently-announced BRAIN (Brain Research through Advancing Innovative Neurotechnologies) Initiative, which aims to revolutionize the understanding of the human mind and uncover new ways to treat, prevent, and cure brain disorders. The team envisions potential for their YSZ windows to facilitate the clinical translation of promising brain imaging and neuromodulation technologies being developed under this initiative.

"This is a case of a science fiction sounding idea becoming science fact, with strong potential for positive impact on patients," said Guillermo Aguilar, a professor of mechanical engineering at UC Riverside's Bourns College of Engineering (BCOE).

Aguilar is part of 10-person team, comprised of faculty, graduate students and researchers from UC Riverside's Bourns College of Engineering and School of Medicine, who recently published a paper "Transparent Nanocrystalline Yttria-Stabilized-Zirconia Calvarium Prosthesis" about their findings online in the journal Nanomedicine: Nanotechnology, Biology and Medicine.

Laser-based treatments have shown significant promise for many brain disorders. However, realization of this promise has been constrained by the need for performing a craniectomy to access the brain since most medical lasers are unable to penetrate the skull. The transparent YSZ implants developed by the UC Riverside team address this issue by providing a permanently implanted view port through the skull.

This is a crucial first step towards an innovative new concept that would provide a clinically-viable means for optically accessing the brain, on-demand, over large areas, and on a chronically-recurring basis, without need for repeated craniectomies," said team member Dr. Devin Binder, a clinician and an associate professor of biomedical sciences at UC Riverside.

Although the team's YSZ windows are not the first transparent skull implants to be reported, they are the first that could be conceivably used in humans, which is a crucial distinction. This is due to the inherent toughness of YSZ, which makes it far more resistant to shock and impact than the glass-based implants previously demonstrated by others. This not only enhances safety, but it may also reduce patient self-consciousness, since the reduced vulnerability of the implant could minimize the need for conspicuous protective headgear.

In addition to Aguilar and Binder, authors of the paper are: Yasaman Damestani, a Ph.D. student working with Aguilar; B. Hyle Park, an assistant professor of bioengineering; Carissa L. Reynolds, a Ph.D. student working with Park; Javier E. Garay, an associate professor of mechanical engineering; Yasuhiro Kodera, a project scientist who works in Garay's lab; Masaru P. Rao, an assistant professor of mechanical engineering; Jenny Szu, a lab technician in Binder's lab; and Mike S. Hsu, a staff research associate in Binder's lab.

This research was supported, in part, by the UC Riverside Chancellor's Strategic Research Initiative.

####

For more information, please click here

Contacts:
Sean Nealon

951-827-1287

Copyright © University of California - Riverside

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

DNA sensor system developed for specific and sensitive measurement of cancer-relevant enzyme activity August 23rd, 2017

Lego proteins revealed: Self-assembling protein complexes based on a single mutation could provide scaffolding for nanostructures August 23rd, 2017

Heating quantum matter: A novel view on topology: Physicists demonstrate how heating up a quantum system can be used as a universal probe for exotic states of matter August 22nd, 2017

A Tougher Tooth: A new dental restoration composite developed by UCSB scientists proves more durable than the conventional material August 22nd, 2017

Imaging

Tokai University research: Nanomaterial wrap for improved tissue imaging August 21st, 2017

Industryís First Dedicated Cryo-DualBeam System Automates Preparation of Frozen, Biological Samples: New Thermo Scientific Aquilos FIB/SEM protects sample integrity and enhances productivity for cryo-electron tomography workflow August 8th, 2017

New Quattro Field Emission ESEM Emphasizes Versatility and Ease of Use: Thermo Scientific Quattro ESEM allows materials science researchers to study nanoscale structure in almost any material under a range of environmental conditions August 8th, 2017

Thermo Fisher Scientificís New Talos F200i S/TEM Delivers Flexible, High-Performance Imaging: New compact S/TEM can be configured to meet specific imaging and analytical requirements for materials characterization in research laboratories August 8th, 2017

Nanomedicine

DNA sensor system developed for specific and sensitive measurement of cancer-relevant enzyme activity August 23rd, 2017

Lego proteins revealed: Self-assembling protein complexes based on a single mutation could provide scaffolding for nanostructures August 23rd, 2017

Tokai University research: Nanomaterial wrap for improved tissue imaging August 21st, 2017

Gold nanostars and immunotherapy vaccinate mice against cancer: New treatment cures, vaccinates mouse in small proof-of-concept study August 18th, 2017

Discoveries

DNA sensor system developed for specific and sensitive measurement of cancer-relevant enzyme activity August 23rd, 2017

Lego proteins revealed: Self-assembling protein complexes based on a single mutation could provide scaffolding for nanostructures August 23rd, 2017

Heating quantum matter: A novel view on topology: Physicists demonstrate how heating up a quantum system can be used as a universal probe for exotic states of matter August 22nd, 2017

A Tougher Tooth: A new dental restoration composite developed by UCSB scientists proves more durable than the conventional material August 22nd, 2017

Announcements

DNA sensor system developed for specific and sensitive measurement of cancer-relevant enzyme activity August 23rd, 2017

Lego proteins revealed: Self-assembling protein complexes based on a single mutation could provide scaffolding for nanostructures August 23rd, 2017

Heating quantum matter: A novel view on topology: Physicists demonstrate how heating up a quantum system can be used as a universal probe for exotic states of matter August 22nd, 2017

A Tougher Tooth: A new dental restoration composite developed by UCSB scientists proves more durable than the conventional material August 22nd, 2017

Photonics/Optics/Lasers

Researchers printed graphene-like materials with inkjet August 17th, 2017

Moving at the Speed of Light: University of Arizona selected for high-impact, industrial demonstration of new integrated photonic cryogenic datalink for focal plane arrays: Program is major milestone for AIM Photonics August 10th, 2017

Sensing technology takes a quantum leap with RIT photonics research: Office of Naval Research funds levitated optomechanics project August 10th, 2017

High resolution without particle accelerator: A first for physics -- University of Jena physicists are first to achieve optical coherence tomography with XUV radiation at laboratory scale August 7th, 2017

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project