Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > Biodegradable Nanofibrous Scaffold Designed for Cell Growth, Tissue Recovery

Abstract:
Iranian nanomaterial experts in association with pharmaceutical researchers succeeded in designing biodegradable nanofibrous scaffold by using bioactive glass nanoparticles, which is appropriate for cell growth and tissue recovery in the treatment of injured bone tissues.

Biodegradable Nanofibrous Scaffold Designed for Cell Growth, Tissue Recovery

Tehran, Iran | Posted on September 3rd, 2013

The product of this plan has applications in medical fields after the preparation and after passing the complementary in vitro tests as drug carrying scaffold and bioactive agents to grow bone cell and to cure the injured bone tissues.

In order to improve the mechanical properties and bioactivity of the nanofibers, bioactive glass nanoparticles were added while simvastatin drug (aiming to speed up the growth of the bone tissue) was loaded in the fibers to increase the efficiency of the scaffold. Years ago, Hench et al showed that bioactive glasses had good ability to make bonds with bone tissue, and they made desirable joint with the bone. Results of other researches display that simvastatin (the drug to reduce cholesterol in blood) has positive effect on bone metabolism. Therefore, it was decided that these two materials are combined with polycaprolactone nanofibers in this research to produce a nanofibrous scaffold suitable for the bone tissue.

In this research, polycaprolactone composite nanofibers loaded with simvastatin drug and bioactive glass nanoparticles were produced through electrospinning method, and their biological and mechanical properties were investigated in laboratorial and also in human's body simulated media.

Results of biodegradability and drug delivery tests showed that the presence of glass nanoparticles increase the degradability of the nanofiber web in body's simulated media due to their hydrolysis ability in aqueous environment. Therefore, more drug is released in comparison with the nanofibers without nanoparticles.

One of the recent results of the research has been published on 15 July 2013 in Chemical Engineering Journal, vol. 228, pp. 1057-1065.

####

For more information, please click here

Copyright © Fars News Agency

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

DNA triggers shape-shifting in hydrogels, opening a new way to make 'soft robots' September 21st, 2017

Physicists develop new recipes for design of fast single-photon gun Physicists develop high-speed single-photon sources for quantum computers of the future September 21st, 2017

GLOBALFOUNDRIES Announces Availability of mmWave and RF/Analog on Leading FDX™ FD-SOI Technology Platform: Technology solution delivers ‘connected intelligence’ to next generation high-volume wireless and IoT applications with lower power and significantly reduced cost September 20th, 2017

GLOBALFOUNDRIES Announces Availability of Embedded MRAM on Leading 22FDX® FD-SOI Platform: Advanced embedded non-volatile memory solution delivers ‘connected intelligence’ by expanding SoC capabilities on the 22nm process node September 20th, 2017

Nanomedicine

Do titanium dioxide particles from orthopedic implants disrupt bone repair? September 16th, 2017

Arrowhead Hosts Investor & Analyst R&D Day to Introduce TRiM(TM) Platform and Lead RNAi-based Drug Candidates September 14th, 2017

Graphene based terahertz absorbers: Printable graphene inks enable ultrafast lasers in the terahertz range September 13th, 2017

Applications for the nanomedTAB are open until September 18th, 2017 September 13th, 2017

Discoveries

DNA triggers shape-shifting in hydrogels, opening a new way to make 'soft robots' September 21st, 2017

Physicists develop new recipes for design of fast single-photon gun Physicists develop high-speed single-photon sources for quantum computers of the future September 21st, 2017

Copper catalyst yields high efficiency CO2-to-fuels conversion: Berkeley Lab scientists discover critical role of nanoparticle transformation September 20th, 2017

Solar-to-fuel system recycles CO2 to make ethanol and ethylene: Berkeley Lab advance is first demonstration of efficient, light-powered production of fuel via artificial photosynthesis September 19th, 2017

Announcements

DNA triggers shape-shifting in hydrogels, opening a new way to make 'soft robots' September 21st, 2017

Physicists develop new recipes for design of fast single-photon gun Physicists develop high-speed single-photon sources for quantum computers of the future September 21st, 2017

GLOBALFOUNDRIES Introduces New 12nm FinFET Technology for High-Performance Applications September 20th, 2017

Copper catalyst yields high efficiency CO2-to-fuels conversion: Berkeley Lab scientists discover critical role of nanoparticle transformation September 20th, 2017

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers

DNA triggers shape-shifting in hydrogels, opening a new way to make 'soft robots' September 21st, 2017

Physicists develop new recipes for design of fast single-photon gun Physicists develop high-speed single-photon sources for quantum computers of the future September 21st, 2017

Copper catalyst yields high efficiency CO2-to-fuels conversion: Berkeley Lab scientists discover critical role of nanoparticle transformation September 20th, 2017

Solar-to-fuel system recycles CO2 to make ethanol and ethylene: Berkeley Lab advance is first demonstration of efficient, light-powered production of fuel via artificial photosynthesis September 19th, 2017

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project