Nanotechnology Now





Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > Biodegradable Nanofibrous Scaffold Designed for Cell Growth, Tissue Recovery

Abstract:
Iranian nanomaterial experts in association with pharmaceutical researchers succeeded in designing biodegradable nanofibrous scaffold by using bioactive glass nanoparticles, which is appropriate for cell growth and tissue recovery in the treatment of injured bone tissues.

Biodegradable Nanofibrous Scaffold Designed for Cell Growth, Tissue Recovery

Tehran, Iran | Posted on September 3rd, 2013

The product of this plan has applications in medical fields after the preparation and after passing the complementary in vitro tests as drug carrying scaffold and bioactive agents to grow bone cell and to cure the injured bone tissues.

In order to improve the mechanical properties and bioactivity of the nanofibers, bioactive glass nanoparticles were added while simvastatin drug (aiming to speed up the growth of the bone tissue) was loaded in the fibers to increase the efficiency of the scaffold. Years ago, Hench et al showed that bioactive glasses had good ability to make bonds with bone tissue, and they made desirable joint with the bone. Results of other researches display that simvastatin (the drug to reduce cholesterol in blood) has positive effect on bone metabolism. Therefore, it was decided that these two materials are combined with polycaprolactone nanofibers in this research to produce a nanofibrous scaffold suitable for the bone tissue.

In this research, polycaprolactone composite nanofibers loaded with simvastatin drug and bioactive glass nanoparticles were produced through electrospinning method, and their biological and mechanical properties were investigated in laboratorial and also in human's body simulated media.

Results of biodegradability and drug delivery tests showed that the presence of glass nanoparticles increase the degradability of the nanofiber web in body's simulated media due to their hydrolysis ability in aqueous environment. Therefore, more drug is released in comparison with the nanofibers without nanoparticles.

One of the recent results of the research has been published on 15 July 2013 in Chemical Engineering Journal, vol. 228, pp. 1057-1065.

####

For more information, please click here

Copyright © Fars News Agency

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Squeezed quantum cats May 28th, 2015

New chip makes testing for antibiotic-resistant bacteria faster, easier: Researchers at the University of Toronto design diagnostic chip to reduce testing time from days to one hour, allowing doctors to pick the right antibiotic the first time May 28th, 2015

Collaboration could lead to biodegradable computer chips May 28th, 2015

Arrowhead to Present at Jefferies 2015 Healthcare Conference May 27th, 2015

Nanomedicine

New chip makes testing for antibiotic-resistant bacteria faster, easier: Researchers at the University of Toronto design diagnostic chip to reduce testing time from days to one hour, allowing doctors to pick the right antibiotic the first time May 28th, 2015

Arrowhead to Present at Jefferies 2015 Healthcare Conference May 27th, 2015

Seeing the action: UCSB researchers develop a novel device to image the minute forces and actions involved in cell membrane hemifusion May 27th, 2015

Nanotechnology identifies brain tumor types through MRI 'virtual biopsy' in animal studies: If results are confirmed in humans, tumor cells could someday be diagnosed by MRI imaging and treated with tumor-specific IV injections; new NIH grant will fund future study May 27th, 2015

Discoveries

Squeezed quantum cats May 28th, 2015

New chip makes testing for antibiotic-resistant bacteria faster, easier: Researchers at the University of Toronto design diagnostic chip to reduce testing time from days to one hour, allowing doctors to pick the right antibiotic the first time May 28th, 2015

Collaboration could lead to biodegradable computer chips May 28th, 2015

Who needs water to assemble DNA? Non-aqueous solvent supports DNA nanotechnology May 27th, 2015

Announcements

Squeezed quantum cats May 28th, 2015

New chip makes testing for antibiotic-resistant bacteria faster, easier: Researchers at the University of Toronto design diagnostic chip to reduce testing time from days to one hour, allowing doctors to pick the right antibiotic the first time May 28th, 2015

Collaboration could lead to biodegradable computer chips May 28th, 2015

Controlled Release of Anticorrosive Materials in Spot by Nanocarriers May 27th, 2015

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers

Squeezed quantum cats May 28th, 2015

New chip makes testing for antibiotic-resistant bacteria faster, easier: Researchers at the University of Toronto design diagnostic chip to reduce testing time from days to one hour, allowing doctors to pick the right antibiotic the first time May 28th, 2015

Who needs water to assemble DNA? Non-aqueous solvent supports DNA nanotechnology May 27th, 2015

Controlled Release of Anticorrosive Materials in Spot by Nanocarriers May 27th, 2015

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More










ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project