Nanotechnology Now







Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > Biodegradable Nanofibrous Scaffold Designed for Cell Growth, Tissue Recovery

Abstract:
Iranian nanomaterial experts in association with pharmaceutical researchers succeeded in designing biodegradable nanofibrous scaffold by using bioactive glass nanoparticles, which is appropriate for cell growth and tissue recovery in the treatment of injured bone tissues.

Biodegradable Nanofibrous Scaffold Designed for Cell Growth, Tissue Recovery

Tehran, Iran | Posted on September 3rd, 2013

The product of this plan has applications in medical fields after the preparation and after passing the complementary in vitro tests as drug carrying scaffold and bioactive agents to grow bone cell and to cure the injured bone tissues.

In order to improve the mechanical properties and bioactivity of the nanofibers, bioactive glass nanoparticles were added while simvastatin drug (aiming to speed up the growth of the bone tissue) was loaded in the fibers to increase the efficiency of the scaffold. Years ago, Hench et al showed that bioactive glasses had good ability to make bonds with bone tissue, and they made desirable joint with the bone. Results of other researches display that simvastatin (the drug to reduce cholesterol in blood) has positive effect on bone metabolism. Therefore, it was decided that these two materials are combined with polycaprolactone nanofibers in this research to produce a nanofibrous scaffold suitable for the bone tissue.

In this research, polycaprolactone composite nanofibers loaded with simvastatin drug and bioactive glass nanoparticles were produced through electrospinning method, and their biological and mechanical properties were investigated in laboratorial and also in human's body simulated media.

Results of biodegradability and drug delivery tests showed that the presence of glass nanoparticles increase the degradability of the nanofiber web in body's simulated media due to their hydrolysis ability in aqueous environment. Therefore, more drug is released in comparison with the nanofibers without nanoparticles.

One of the recent results of the research has been published on 15 July 2013 in Chemical Engineering Journal, vol. 228, pp. 1057-1065.

####

For more information, please click here

Copyright © Fars News Agency

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

New method allows for greater variation in band gap tunability: The method can change a material's electronic band gap by up to 200 percent January 31st, 2015

Evidence mounts for quantum criticality theory: Findings bolster theory that quantum fluctuations drive strange electronic phenomena January 30th, 2015

Everything You Need To Know About Nanopesticides January 30th, 2015

DNA nanoswitches reveal how life's molecules connect: An accessible new way to study molecular interactions could lower cost and time associated with discovering new drugs January 30th, 2015

Nanomedicine

DNA nanoswitches reveal how life's molecules connect: An accessible new way to study molecular interactions could lower cost and time associated with discovering new drugs January 30th, 2015

Made-in-Singapore rapid test kit detects dengue antibodies from saliva: IBN's MedTech innovation simplifies diagnosis of infectious diseases January 29th, 2015

Iranian Researchers Planning to Produce Edible Insulin January 28th, 2015

Nanoparticles that deliver oligonucleotide drugs into cells described in Nucleic Acid Therapeutics January 28th, 2015

Discoveries

New method allows for greater variation in band gap tunability: The method can change a material's electronic band gap by up to 200 percent January 31st, 2015

Evidence mounts for quantum criticality theory: Findings bolster theory that quantum fluctuations drive strange electronic phenomena January 30th, 2015

Everything You Need To Know About Nanopesticides January 30th, 2015

DNA nanoswitches reveal how life's molecules connect: An accessible new way to study molecular interactions could lower cost and time associated with discovering new drugs January 30th, 2015

Announcements

New method allows for greater variation in band gap tunability: The method can change a material's electronic band gap by up to 200 percent January 31st, 2015

Evidence mounts for quantum criticality theory: Findings bolster theory that quantum fluctuations drive strange electronic phenomena January 30th, 2015

Everything You Need To Know About Nanopesticides January 30th, 2015

DNA nanoswitches reveal how life's molecules connect: An accessible new way to study molecular interactions could lower cost and time associated with discovering new drugs January 30th, 2015

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers

New method allows for greater variation in band gap tunability: The method can change a material's electronic band gap by up to 200 percent January 31st, 2015

DNA nanoswitches reveal how life's molecules connect: An accessible new way to study molecular interactions could lower cost and time associated with discovering new drugs January 30th, 2015

Crystal light: New light-converting materials point to cheaper, more efficient solar power: University of Toronto engineers study first single crystal perovskites for new solar cell and LED applications January 30th, 2015

Iranian Scientists Use MOFs to Eliminate Dye Pollutants January 29th, 2015

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More










ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2015 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE