Nanotechnology Now

Our NanoNews Digest Sponsors


Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > DNA 'cages' may aid drug delivery: Researchers find nanostructures made of DNA strands can encapsulate, release small-molecule drugs

A DNA cage (at left), with lipid-like molecules (in blue). The lipids come together in a "handshake" within the cage (center image) to encapsulate small-molecule drugs (purple). The molecules are released (at right) in response to the presence of a specific nucleic acid.

Credit: Thomas Edwardson, McGill University
A DNA cage (at left), with lipid-like molecules (in blue). The lipids come together in a "handshake" within the cage (center image) to encapsulate small-molecule drugs (purple). The molecules are released (at right) in response to the presence of a specific nucleic acid.

Credit: Thomas Edwardson, McGill University

Abstract:
Nanoscale "cages" made from strands of DNA can encapsulate small-molecule drugs and release them in response to a specific stimulus, McGill University researchers report in a new study.

DNA 'cages' may aid drug delivery: Researchers find nanostructures made of DNA strands can encapsulate, release small-molecule drugs

Montreal, Canada | Posted on September 2nd, 2013

The research, published online Sept. 1 in Nature Chemistry, marks a step toward the use of biological nanostructures to deliver drugs to diseased cells in patients. The findings could also open up new possibilities for designing DNA-based nanomaterials.

"This research is important for drug delivery, but also for fundamental structural biology and nanotechnology," says McGill Chemistry professor Hanadi Sleiman, who led the research team.

DNA carries the genetic information of all living organisms from one generation to the next. But strands of the material can also be used to build nanometre-scale structures. (A nanometre is one billionth of a metre - roughly one-100,000th the diameter of a human hair.)

In their experiments, the McGill researchers first created DNA cubes using short DNA strands, and modified them with lipid-like molecules. The lipids can act like sticky patches that come together and engage in a "handshake" inside the DNA cube, creating a core that can hold cargo such as drug molecules.

The McGill researchers also found that when the sticky patches were placed on one of the outside faces of the DNA cubes, two cubes could attach together. This new mode of assembly has similarities to the way that proteins fold into their functional structures, Sleiman notes. "It opens up a range of new possibilities for designing DNA-based nanomaterials."

Sleiman's lab has previously demonstrated that gold nanoparticles can be loaded and released from DNA nanotubes, providing a preliminary proof of concept that drug delivery might be possible. But the new study marks the first time that small molecules -- which are considerably smaller than the gold nanoparticles -- have been manipulated in such a way using a DNA nanostructure, the researchers report.

DNA nanostructures have several potential advantages over the synthetic materials often used to deliver drugs within the body, says Thomas Edwardson, a McGill doctoral student and co-author of the new paper. "DNA structures can be built with great precision, they are biodegradable and their size, shape and properties can be easily tuned".

The DNA cages can be made to release drugs in the presence of a specific nucleic acid sequence. "Many diseased cells, such as cancer cells, overexpress certain genes," Edwardson adds. "In a future application, one can imagine a DNA cube that carries drug cargo to the diseased cell environment, which will trigger the release of the drug." The Sleiman group is now conducting cell and animal studies to assess the viability of this method on chronic lymphocytic leukemia (CLL) and prostate cancer, in collaboration with researchers at the Lady Davis Institute for Medical Research at Montreal's Jewish General Hospital.

Funding for the Sleiman team's research was provided by the Natural Sciences and Engineering Research Council of Canada (NSERC), a CIHR Drug Development Training Program scholarship to Mr. Edwardson, the Canada Foundation for Innovation (CFI), the Centre for Self- Assembled Chemical Structures (CSACS) and the Canadian Institute for Advanced Research (CIFAR).

####

For more information, please click here

Contacts:
Chris Chipello

514-398-4201

Copyright © McGill University

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

UK NANOSAFETY GROUP publishes 2nd Edition of guidance to support safe working with nanomaterials May 30th, 2016

Fast, stretchy circuits could yield new wave of wearable electronics May 30th, 2016

Automating DNA origami opens door to many new uses: Like 3-D printing did for larger objects, method makes it easy to build nanoparticles out of DNA May 30th, 2016

Simple attraction: Researchers control protein release from nanoparticles without encapsulation: U of T Engineering discovery stands to improve reliability and fabrication process for treatments to conditions such as spinal cord damage and stroke May 28th, 2016

Govt.-Legislation/Regulation/Funding/Policy

Scientists illuminate a hidden regulator in gene transcription: New super-resolution technique visualizes important role of short-lived enzyme clusters May 27th, 2016

Doubling down on Schrödinger's cat May 27th, 2016

Harnessing solar and wind energy in one device could power the 'Internet of Things' May 26th, 2016

Thermal modification of wood and a complex study of its properties by magnetic resonance May 26th, 2016

Nanomedicine

Automating DNA origami opens door to many new uses: Like 3-D printing did for larger objects, method makes it easy to build nanoparticles out of DNA May 30th, 2016

Simple attraction: Researchers control protein release from nanoparticles without encapsulation: U of T Engineering discovery stands to improve reliability and fabrication process for treatments to conditions such as spinal cord damage and stroke May 28th, 2016

Scientists illuminate a hidden regulator in gene transcription: New super-resolution technique visualizes important role of short-lived enzyme clusters May 27th, 2016

Supercrystals with new architecture can enhance drug synthesis May 24th, 2016

Discoveries

Fast, stretchy circuits could yield new wave of wearable electronics May 30th, 2016

Automating DNA origami opens door to many new uses: Like 3-D printing did for larger objects, method makes it easy to build nanoparticles out of DNA May 30th, 2016

Simple attraction: Researchers control protein release from nanoparticles without encapsulation: U of T Engineering discovery stands to improve reliability and fabrication process for treatments to conditions such as spinal cord damage and stroke May 28th, 2016

Scientists illuminate a hidden regulator in gene transcription: New super-resolution technique visualizes important role of short-lived enzyme clusters May 27th, 2016

Announcements

UK NANOSAFETY GROUP publishes 2nd Edition of guidance to support safe working with nanomaterials May 30th, 2016

Fast, stretchy circuits could yield new wave of wearable electronics May 30th, 2016

Automating DNA origami opens door to many new uses: Like 3-D printing did for larger objects, method makes it easy to build nanoparticles out of DNA May 30th, 2016

Simple attraction: Researchers control protein release from nanoparticles without encapsulation: U of T Engineering discovery stands to improve reliability and fabrication process for treatments to conditions such as spinal cord damage and stroke May 28th, 2016

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers

UK NANOSAFETY GROUP publishes 2nd Edition of guidance to support safe working with nanomaterials May 30th, 2016

Fast, stretchy circuits could yield new wave of wearable electronics May 30th, 2016

Automating DNA origami opens door to many new uses: Like 3-D printing did for larger objects, method makes it easy to build nanoparticles out of DNA May 30th, 2016

Simple attraction: Researchers control protein release from nanoparticles without encapsulation: U of T Engineering discovery stands to improve reliability and fabrication process for treatments to conditions such as spinal cord damage and stroke May 28th, 2016

Grants/Awards/Scholarships/Gifts/Contests/Honors/Records

Scientists illuminate a hidden regulator in gene transcription: New super-resolution technique visualizes important role of short-lived enzyme clusters May 27th, 2016

Finding a new formula for concrete: Researchers look to bones and shells as blueprints for stronger, more durable concrete May 26th, 2016

Light can 'heal' defects in new solar cell materials: Defects in some new electronic materials can be removed by making ions move under illumination May 24th, 2016

Supercrystals with new architecture can enhance drug synthesis May 24th, 2016

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







Car Brands
Buy website traffic