Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > New nanoparticles make solar cells cheaper to manufacture

UAlberta researcher Jillian Buriak (centre) worked with post-doctoral fellows Erik Luber (right) and Hosnay Mobarok to create nanoparticles that could lead to printable or spray-on solar cells.
UAlberta researcher Jillian Buriak (centre) worked with post-doctoral fellows Erik Luber (right) and Hosnay Mobarok to create nanoparticles that could lead to printable or spray-on solar cells.

Abstract:
University of Alberta researchers have found that abundant materials in the Earth's crust can be used to make inexpensive and easily manufactured nanoparticle-based solar cells.

New nanoparticles make solar cells cheaper to manufacture

Edmonton, Canada | Posted on August 31st, 2013

The U of A discovery, several years in the making, is an important step forward in making solar power more accessible to parts of the world that are off the traditional electricity grid or face high power costs, such as the Canadian North, said researcher Jillian Buriak, a chemistry professor and senior research officer of the National Institute for Nanotechnology, based on the U of A campus.

Buriak and her team have designed nanoparticles that absorb light and conduct electricity from two very common elements: phosphorus and zinc. Both materials are more plentiful than scarce materials such as cadmium and free from manufacturing restrictions imposed on lead-based nanoparticles.

"Half the world already lives off the grid, and with demand for electrical power expected to double by the year 2050, it is important that renewable energy sources like solar power are made more affordable by lowering the costs of manufacturing," Buriak said.

Her team's research supports a promising approach of making solar cells cheaply using mass manufacturing methods like roll-to-roll printing (as with newspaper presses) or spray-coating (similar to automotive painting). "Nanoparticle-based 'inks' could be used to literally paint or print solar cells or precise compositions," Buriak said.

The team was able to develop a synthetic method to make zinc phosphide nanoparticles and demonstrated that the particles can be dissolved to form an ink and processed to make thin films that are responsive to light.

Buriak and her team are now experimenting with the nanoparticles, spray-coating them onto large solar cells to test their efficiency. The team has applied for a provisional patent and has secured funding to enable the next step to scale-up manufacture.

The research, which was supported by the Natural Sciences and Engineering Research Council of Canada, is published in the latest issue of ACS Nano.

####

For more information, please click here

Contacts:
Bev Betkowski

780-492-3808

Professor Jillian Buriak
Senior Research Officer
National Institute for Nanotechnology
Department of Chemistry
University of Alberta
780-492-1821

Copyright © University of Alberta

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

ACS Nano article:

Jillian Buriak:

Faculty of Engineering:

National Institute for Nanotechnology:

Faculty of Science:

Natural Sciences and Engineering Research Council of Canada:

Related News Press

News and information

Particle Works creates range of high performance quantum dots February 23rd, 2017

GLOBALFOUNDRIES Announces Availability of 45nm RF SOI to Advance 5G Mobile Communications: Optimized RF features deliver high-performance solutions for mmWave beam forming applications in 5G smartphones and base stations February 22nd, 2017

EmTech Asia breaks new barriers with potential applications of space exploration with NASA and MIT February 22nd, 2017

JPK selects compact tensile stage from Deben for their NanoWizardŽ AFM platform to broaden capabilities for materials characterisation February 22nd, 2017

Discoveries

Molecular phenomenon discovered by advanced NMR facility: Cutting edge technology has shown a molecule self-assembling into different forms when passing between solution state to solid state, and back again - a curious phenomenon in science - says research by the University of Wa February 22nd, 2017

Tiny nanoclusters could solve big problems for lithium-ion batteries February 21st, 2017

Oxford Instruments announces Dr Brad Ramshaw of Cornell University, as winner of the 2017 Lee Osheroff Richardson Science Prize February 20th, 2017

Breakthrough with a chain of gold atoms: In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport February 20th, 2017

Announcements

Particle Works creates range of high performance quantum dots February 23rd, 2017

GLOBALFOUNDRIES Announces Availability of 45nm RF SOI to Advance 5G Mobile Communications: Optimized RF features deliver high-performance solutions for mmWave beam forming applications in 5G smartphones and base stations February 22nd, 2017

EmTech Asia breaks new barriers with potential applications of space exploration with NASA and MIT February 22nd, 2017

JPK selects compact tensile stage from Deben for their NanoWizardŽ AFM platform to broaden capabilities for materials characterisation February 22nd, 2017

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers

Molecular phenomenon discovered by advanced NMR facility: Cutting edge technology has shown a molecule self-assembling into different forms when passing between solution state to solid state, and back again - a curious phenomenon in science - says research by the University of Wa February 22nd, 2017

Tiny nanoclusters could solve big problems for lithium-ion batteries February 21st, 2017

Breakthrough with a chain of gold atoms: In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport February 20th, 2017

'Lossless' metamaterial could boost efficiency of lasers and other light-based devices February 20th, 2017

Energy

Strem Chemicals and Dotz Nano Ltd. Sign Distribution Agreement for Graphene Quantum Dots Collaboration February 21st, 2017

'Lossless' metamaterial could boost efficiency of lasers and other light-based devices February 20th, 2017

In-cell molecular sieve from protein crystal February 14th, 2017

NREL research pinpoints promise of polycrystalline perovskites February 8th, 2017

Solar/Photovoltaic

Strem Chemicals and Dotz Nano Ltd. Sign Distribution Agreement for Graphene Quantum Dots Collaboration February 21st, 2017

'Lossless' metamaterial could boost efficiency of lasers and other light-based devices February 20th, 2017

Material can turn sunlight, heat and movement into electricity -- all at once: Extracting energy from multiple sources could help power wearable technology February 9th, 2017

NREL research pinpoints promise of polycrystalline perovskites February 8th, 2017

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project