Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > Reproducing nature's chemistry: Researchers alter molecular properties in a new way

Bartosz Grzybowski
Bartosz Grzybowski

Abstract:
In their search for molecules with certain characteristics, chemists have produced millions of new, increasingly complex synthetic materials by altering molecules' chemical structures.

Reproducing nature's chemistry: Researchers alter molecular properties in a new way

Evanston, IL | Posted on August 29th, 2013

Taking cues from nature, Northwestern University researchers have recently tested a new method for achieving the molecular properties they seek: by changing the geometry of the surface to which molecules are bound.

"For years chemists have been making molecules to solve problems — each one more synthetically complicated than the last — but we still haven't come close to achieving what nature can do with much simpler chemistry,'" said Bartosz A. Grzybowski, Kenneth Burgess Professor of Chemical and Biological Engineering and Chemistry at Northwestern's McCormick School of Engineering and Applied Science. "Nature's most complex component of life, the protein, is made from only 21 simple amino acids. This research explores the idea that it's not the molecule you have that's important, it is how it interacts with its environment."

Using this idea, the researchers developed a technique in which a single type of molecule is placed on nanoparticles with two different regions of curvature. Although the molecules are atomically identical, they demonstrate unique chemical properties depending on what region of curvature they are bound to.

The researchers began by affixing molecules of a carboxylic acid at various points on several gold nanoparticles, some as small as five nanometers in diameter. Each nanoparticle possessed a different geometry. On nanoparticles exhibiting a greater curvature, the molecules were naturally spaced father apart; on nanoparticles with more gradual curvature, they were closer together.

The differences in curvature influences the distance between the molecules, making it possible for the researchers to induce so-called "patchiness" on cylindrical- and dumbbell-shaped nanoparticles. Essentially, the molecules can "feel" each other through repulsive electrostatic interactions and, as the carboxylic acids are depronated, the difficulty in adding more charges onto the nanoparticles is controlled by how crowded the molecules are. These "patchy" nanoparticles can interact and self-assemble directionally, mimicking chemical molecular bonds — and, the researchers found, altering when the charge of these attached molecules changes.

"Changing molecular properties by altering environments instead of molecular structure could free scientists to accomplish more with a smaller library of already existing molecules, and could offer alternatives to chemical processes that often require toxic chemicals," said David Walker, a graduate student in McCormick's Department of Chemical and Biological Engineering and the paper's first author.

The curvature phenomenon is specific to the nano-scale, where most of the chemistry in biological systems is performed, and begins to fail for nanoparticles above 10 nanometers in diameter, the researchers said. "Larger particles have curvatures that are just too subtle for the molecules to feel the effect — similar to how humans might perceive the Earth to be flat, even though we now know better," Walker said.

The researchers are currently working to extend the work to other classes of molecules that could be beneficial for catalysis and energy purposes.

Other authors of the paper are Igal Szeifer, Christina Enroth-Cugell Professor of Biomedical Engineering and professor of chemistry, chemical and biological engineering, and professor of medicine; graduate student Emily Leitsch; and postdoctoral researcher Rikkert Nap, all of Northwestern.

####

For more information, please click here

Contacts:
Megan Fellman

847-491-3115

Copyright © Northwestern University

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

A paper describing the research, “Geometric Curvature Controls the Chemical Patchiness and Self-Assembly of Nanoparticles,” was published August 18 in Nature Nanotechnology:

Related News Press

News and information

Shining rings: A new material emits white light when exposed to electricity: New synthetic approach could spark development of other dynamic materials July 24th, 2017

Ultrathin device harvests electricity from human motion July 23rd, 2017

The July 23 close fly-by of asteroid 2017 BS5 is explored in a Q&A with Dr. John S. Lewis, chief scientist at Deep Space Industries July 23rd, 2017

Scientists announce the quest for high-index materials: All-dielectric nanophotonics: The quest for better materials and fabrication techniques July 22nd, 2017

Pulses of electrons manipulate nanomagnets and store information: Scientists use electron pulses to create and manipulate nanoscale magnetic excitations that can store data July 21st, 2017

Chemistry

Scientists announce the quest for high-index materials: All-dielectric nanophotonics: The quest for better materials and fabrication techniques July 22nd, 2017

Tokyo Institute of Technology research: Antiaromatic molecule displays record electrical conductance July 19th, 2017

Harnessing light to drive chemical reactions July 19th, 2017

Self Assembly

Oddball enzyme provides easy path to synthetic biomaterials May 17th, 2017

Nanotubes that build themselves April 14th, 2017

Nanocages for gold particles: what is happening inside? March 16th, 2017

Most Complex Nanoparticle Crystal Ever Made by Design: Possible applications include controlling light, capturing pollutants, delivering therapeutics March 2nd, 2017

Discoveries

Shining rings: A new material emits white light when exposed to electricity: New synthetic approach could spark development of other dynamic materials July 24th, 2017

Scientists announce the quest for high-index materials: All-dielectric nanophotonics: The quest for better materials and fabrication techniques July 22nd, 2017

Pulses of electrons manipulate nanomagnets and store information: Scientists use electron pulses to create and manipulate nanoscale magnetic excitations that can store data July 21st, 2017

The first light atomic nucleus with a second face July 20th, 2017

Announcements

Shining rings: A new material emits white light when exposed to electricity: New synthetic approach could spark development of other dynamic materials July 24th, 2017

Ultrathin device harvests electricity from human motion July 23rd, 2017

The July 23 close fly-by of asteroid 2017 BS5 is explored in a Q&A with Dr. John S. Lewis, chief scientist at Deep Space Industries July 23rd, 2017

Scientists announce the quest for high-index materials: All-dielectric nanophotonics: The quest for better materials and fabrication techniques July 22nd, 2017

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers

Shining rings: A new material emits white light when exposed to electricity: New synthetic approach could spark development of other dynamic materials July 24th, 2017

Ultrathin device harvests electricity from human motion July 23rd, 2017

The July 23 close fly-by of asteroid 2017 BS5 is explored in a Q&A with Dr. John S. Lewis, chief scientist at Deep Space Industries July 23rd, 2017

Scientists announce the quest for high-index materials: All-dielectric nanophotonics: The quest for better materials and fabrication techniques July 22nd, 2017

Energy

'Upconverted' light has a bright future: Rice University professor developing plasmon-powered devices for medicine, security, solar cells July 17th, 2017

Making two out of one: FAU researchers have explained the mechanism behind a process that can increase the efficiency of organic solar cells July 12th, 2017

Argonne National Laboratory’s Continuous ALD Technology Licensed Exclusively to Forge Nano July 7th, 2017

Tiny bubbles provide tremendous propulsion in new microparticles research-Ben-Gurion U. June 21st, 2017

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project