Nanotechnology Now

Our NanoNews Digest Sponsors





Heifer International

Wikipedia Affiliate Button


android tablet pc

Home > Press > Reproducing nature's chemistry: Researchers alter molecular properties in a new way

Bartosz Grzybowski
Bartosz Grzybowski

Abstract:
In their search for molecules with certain characteristics, chemists have produced millions of new, increasingly complex synthetic materials by altering molecules' chemical structures.

Reproducing nature's chemistry: Researchers alter molecular properties in a new way

Evanston, IL | Posted on August 29th, 2013

Taking cues from nature, Northwestern University researchers have recently tested a new method for achieving the molecular properties they seek: by changing the geometry of the surface to which molecules are bound.

"For years chemists have been making molecules to solve problems — each one more synthetically complicated than the last — but we still haven't come close to achieving what nature can do with much simpler chemistry,'" said Bartosz A. Grzybowski, Kenneth Burgess Professor of Chemical and Biological Engineering and Chemistry at Northwestern's McCormick School of Engineering and Applied Science. "Nature's most complex component of life, the protein, is made from only 21 simple amino acids. This research explores the idea that it's not the molecule you have that's important, it is how it interacts with its environment."

Using this idea, the researchers developed a technique in which a single type of molecule is placed on nanoparticles with two different regions of curvature. Although the molecules are atomically identical, they demonstrate unique chemical properties depending on what region of curvature they are bound to.

The researchers began by affixing molecules of a carboxylic acid at various points on several gold nanoparticles, some as small as five nanometers in diameter. Each nanoparticle possessed a different geometry. On nanoparticles exhibiting a greater curvature, the molecules were naturally spaced father apart; on nanoparticles with more gradual curvature, they were closer together.

The differences in curvature influences the distance between the molecules, making it possible for the researchers to induce so-called "patchiness" on cylindrical- and dumbbell-shaped nanoparticles. Essentially, the molecules can "feel" each other through repulsive electrostatic interactions and, as the carboxylic acids are depronated, the difficulty in adding more charges onto the nanoparticles is controlled by how crowded the molecules are. These "patchy" nanoparticles can interact and self-assemble directionally, mimicking chemical molecular bonds — and, the researchers found, altering when the charge of these attached molecules changes.

"Changing molecular properties by altering environments instead of molecular structure could free scientists to accomplish more with a smaller library of already existing molecules, and could offer alternatives to chemical processes that often require toxic chemicals," said David Walker, a graduate student in McCormick's Department of Chemical and Biological Engineering and the paper's first author.

The curvature phenomenon is specific to the nano-scale, where most of the chemistry in biological systems is performed, and begins to fail for nanoparticles above 10 nanometers in diameter, the researchers said. "Larger particles have curvatures that are just too subtle for the molecules to feel the effect — similar to how humans might perceive the Earth to be flat, even though we now know better," Walker said.

The researchers are currently working to extend the work to other classes of molecules that could be beneficial for catalysis and energy purposes.

Other authors of the paper are Igal Szeifer, Christina Enroth-Cugell Professor of Biomedical Engineering and professor of chemistry, chemical and biological engineering, and professor of medicine; graduate student Emily Leitsch; and postdoctoral researcher Rikkert Nap, all of Northwestern.

####

For more information, please click here

Contacts:
Megan Fellman

847-491-3115

Copyright © Northwestern University

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

A paper describing the research, “Geometric Curvature Controls the Chemical Patchiness and Self-Assembly of Nanoparticles,” was published August 18 in Nature Nanotechnology:

Related News Press

News and information

Iranians Present Model to Predict Photocatalytic Process in Removal of Pollutants October 30th, 2014

Production of Biocompatible Polymers in Iran October 30th, 2014

Amorphous Coordination Polymer Particles as alternative to classical nanoplatforms for nanomedicine October 30th, 2014

Nanosafety research – there’s room for improvement October 29th, 2014

Chemistry

A new cheap and efficient method to improve SERS, an ultra-sensitive chemical detection technique October 28th, 2014

Iranian, Malaysian Scientists Study Nanophotocatalysts for Water Purification October 23rd, 2014

Could I squeeze by you? Ames Laboratory scientists model molecular movement within narrow channels of mesoporous nanoparticles October 21st, 2014

Non-Toxic Nanocatalysts Open New Window for Significant Decrease in Reaction Process October 19th, 2014

Self Assembly

NYU Researchers Break Nano Barrier to Engineer the First Protein Microfiber October 23rd, 2014

NIST offers electronics industry 2 ways to snoop on self-organizing molecules October 22nd, 2014

‘Designer’ nanodevice could improve treatment options for cancer sufferers October 22nd, 2014

Crystallizing the DNA nanotechnology dream: Scientists have designed the first large DNA crystals with precisely prescribed depths and complex 3D features, which could create revolutionary nanodevices October 20th, 2014

Discoveries

Iranians Present Model to Predict Photocatalytic Process in Removal of Pollutants October 30th, 2014

Production of Biocompatible Polymers in Iran October 30th, 2014

Amorphous Coordination Polymer Particles as alternative to classical nanoplatforms for nanomedicine October 30th, 2014

New solar power material converts 90 percent of captured light into heat: SunShot Project aims to make solar cost competitive October 29th, 2014

Announcements

Iranians Present Model to Predict Photocatalytic Process in Removal of Pollutants October 30th, 2014

Production of Biocompatible Polymers in Iran October 30th, 2014

Amorphous Coordination Polymer Particles as alternative to classical nanoplatforms for nanomedicine October 30th, 2014

Nanosafety research – there’s room for improvement October 29th, 2014

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals

Iranians Present Model to Predict Photocatalytic Process in Removal of Pollutants October 30th, 2014

Production of Biocompatible Polymers in Iran October 30th, 2014

Amorphous Coordination Polymer Particles as alternative to classical nanoplatforms for nanomedicine October 30th, 2014

Microrockets fueled by water neutralize chemical and biological warfare agents October 29th, 2014

Energy

Iranians Present Model to Predict Photocatalytic Process in Removal of Pollutants October 30th, 2014

New solar power material converts 90 percent of captured light into heat: SunShot Project aims to make solar cost competitive October 29th, 2014

New Compact SIMS at 61st AVS | Visit us on Booth 311 October 28th, 2014

New evidence for an exotic, predicted superconducting state October 27th, 2014

NanoNews-Digest
The latest news from around the world, FREE





  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More














ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2014 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE