Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > Almost as sensitive as a dog's nose: New sensor for SERS Raman spectroscopy

The basis of the high-sensitivity sensor are carbon nanotubes having curved tips. The numerous gaps let through the Raman scattered light.Illustration: H.G. Park / ETH Zurich
The basis of the high-sensitivity sensor are carbon nanotubes having curved tips. The numerous gaps let through the Raman scattered light.

Illustration: H.G. Park / ETH Zurich

Abstract:
Scientists at ETH Zurich and the Lawrence Livermore National Laboratory (LLNL) in California have developed an innovative sensor for surface-enhanced Raman spectroscopy (SERS). Thanks to its unique surface properties at nanoscale, the method can be used to perform analyses that are more reliable, sensitive and cost-effective. In experiments with the new sensor, the researchers were able to detect a certain organic species (1,2bis(4-pyridyl)ethylene, or BPE) in a concentration of a few hundred femtomoles per litre. A 100 femtomolar solution contains around 60 million molecules per litre.

Almost as sensitive as a dog's nose: New sensor for SERS Raman spectroscopy

Zurich, Switzerland | Posted on August 28th, 2013

Until now, the detection limit of common SERS systems was in the nanomolar range, i.e. one billionth of a mole. The results of a study conducted by Hyung Gyu Park, Professor of Energy Technology at ETH Zurich, and Tiziana Bond, Capability Leader at LLNL, were published this week as a cover article in the scientific journal Advanced Materials.

Raman spectroscopy takes advantage of the fact that molecules illuminated by fixed-frequency light exhibit 'inelastic' scattering closely related to the vibrational and rotational modes excited in the molecules. Raman scattered light differs from common Rayleigh scattered light in that it has different frequencies than that of the irradiating light and produces a specific frequency pattern for each substance examined, making it possible to use this spectrum information as a fingerprint for detecting and identifying specific substances. To analyse individual molecules, the frequency signals must be amplified, which requires that the molecule in question either be present in a high concentration or located close to a metallic surface that amplifies the signal. Hence the name of the method: surface-enhanced Raman spectroscopy.

Amplified signals for improved reproducibility

"This technology has been around for decades," explains Ali Altun, a doctoral student in the group led by Park at the Institute of Energy Technology. With today's SERS sensors, however, the signal strength is adequate only in isolated cases and yields results with low reproducibility. Altun, Bond and Park therefore set themselves the goal of developing a sensor that massively amplifies the signals of the Raman-scattered light.

The substrate of choice turned out to be vertically arranged, caespitose, densely packed carbon nanotubes (CNT) that guarantee this high density of 'hot spots'. The group developed techniques to grow dense forests of CNTs in a uniform and controlled manner. The availability of this expertise was one of the principal motivations for using nanotubes as the basis for highly sensitive SERS sensors, says Park.

A spaghetti-like surface

The tips of the CNTs are sharply curved, and the researchers coated these tips with gold and hafnium dioxide, a dielectric insulating material. The point of contact between the surface of the sensor and the sample thus resembles a plate of spaghetti topped with sauce. However, between the strands of spaghetti, there are numerous randomly arranged holes that let through scattered light, and the many points of contact -- the 'hot spots' -- amplify the signals.

"One method of making highly sensitive SERS sensors is to take advantage of the contact points of metal nanowires," explains Park. The nano-spaghetti structure with metal-coated CNT tips is perfect for maximising the density of these contact points.

Indeed, Bond explains, the wide distribution of metallic nano-crevices in the nanometre range, well recognised to be responsible for extreme electromagnetic enhancement (or hot spots) and highly pursued by many research groups, has been easily and readily achieved by the team, resulting in the intense and reproducible enhancements.

The sensor differs from other comparable ultra-sensitive SERS sensors not only in terms of its structure, but also because of its relatively inexpensive and simple production process and the very large surface area of the 3D structures producing an intense, uniform signal.

A breakthrough on two levels

Initially, the researchers only coated the tips of the CNTs with gold. The first experiments with the BPE test molecule showed them that they were on the right track, but that the detection limit could not be reduced to quite the degree they had hoped. Eventually, they discovered that the electrons required on the gold layer surface for generating what is referred to as plasmon resonance were flowing out via the conductive carbon nanotubes. The task was then to figure out how to prevent this plasmonic energy leakage.

The researchers coated the CNTs with hafnium oxide, an insulating material, before applying a layer of gold. "This was the breakthrough," says Altun. The insulation layer increased the sensitivity of its sensor substrate by a factor of 100,000 in the molar concentration unit.

"For us as scientists, this was a moment of triumph," agrees Park, "and it showed us that we had made the right hypothesis and a rational design."

The key to the successful development of the sensor was therefore twofold: on the one hand, it was their decision to continue using CNTs, whose morphology is essential for maximising the number of 'hot spots', and on the other hand, it was the fact that these nanotubes were double-coated.

Park and Bond would now like to go one step further and bring their new principle to market, but they are still seeking an industry partner. Next, they want to continue improving the sensitivity of the sensor, and they are also looking for potential areas of application. Park envisions installation of the technology in portable devices, for example to facilitate on-site analysis of chemical impurities such as environmental pollutants or pharmaceutical residues in water. He stresses that invention of a new device is not necessary; it is simple to install the sensor in a suitable way.

Other potential applications include forensic investigations or military applications for early detection of chemical or biological weapons, biomedical application for real-time point-of-care monitoring of physiological levels, and fast screening of drugs and toxins in the area of law enforcement.

####

For more information, please click here

Contacts:
Hyung Gyu Park

41-446-329-460

Copyright © ETH Zurich

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

Reference

Related News Press

News and information

Metal nanoparticles induced visible-light photocatalysis: Mechanisms, applications, ways of promoting catalytic activity and outlook April 27th, 2017

Arrowhead Pharmaceuticals to Webcast Fiscal 2017 Second Quarter Results April 27th, 2017

New Product Nanoparticle preparation from Intertronics with new Thinky NP-100 Nano Pulveriser April 26th, 2017

California Research Alliance by BASF establishes more than 25 research projects in three years April 26th, 2017

Affordable STM32 Cloud-Connectable Kit from STMicroelectronics Puts More Features On-Board for Fast and Flexible IoT-Device Development April 26th, 2017

Laboratories

Video captures bubble-blowing battery in action: Researchers propose how bubbles form, could lead to smaller lithium-air batteries April 26th, 2017

Law enforcement/Anti-Counterfeiting/Security/Loss prevention

Leti Announces Backside Shield that Protects Microchips from Physical Attacks March 8th, 2017

NUS engineers develop low-cost, flexible terahertz radiation source for fast, non-invasive screening: Novel invention presents promising applications in spectroscopy, safety surveillance, cancer diagnosis, imaging and communication February 1st, 2017

Strength of hair inspires new materials for body armor January 18th, 2017

Dressing a metal in various colors: DGIST research developed a technology to coat metal with several nanometers of semiconducting materials January 17th, 2017

Sensors

Better living through pressure: Functional nanomaterials made easy April 19th, 2017

A Sensitive And Dynamic Tactile Sensor Read more from Asian Scientist Magazine at: https://www.asianscientist.com/2017/04/tech/tactile-3d-active-matrix-sensor/ April 18th, 2017

AIM Photonics Presents Cutting-Edge Integrated Photonics Technology Developments to Packed House at OFC 2017, the Optical Networking and Communication Conference & Exhibition April 11th, 2017

New technology could offer cheaper, faster food testing: Specialized droplets interact with bacteria and can be analyzed using a smartphone April 7th, 2017

Discoveries

Metal nanoparticles induced visible-light photocatalysis: Mechanisms, applications, ways of promoting catalytic activity and outlook April 27th, 2017

Geoffrey Beach: Drawn to explore magnetism: Materials researcher is working on the magnetic memory of the future April 25th, 2017

Using light to propel water : With new method, MIT engineers can control and separate fluids on a surface using only visible light April 25th, 2017

Nanoparticle vaccine shows potential as immunotherapy to fight multiple cancer types April 24th, 2017

Announcements

Metal nanoparticles induced visible-light photocatalysis: Mechanisms, applications, ways of promoting catalytic activity and outlook April 27th, 2017

Arrowhead Pharmaceuticals to Webcast Fiscal 2017 Second Quarter Results April 27th, 2017

New Product Nanoparticle preparation from Intertronics with new Thinky NP-100 Nano Pulveriser April 26th, 2017

California Research Alliance by BASF establishes more than 25 research projects in three years April 26th, 2017

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers

Metal nanoparticles induced visible-light photocatalysis: Mechanisms, applications, ways of promoting catalytic activity and outlook April 27th, 2017

Video captures bubble-blowing battery in action: Researchers propose how bubbles form, could lead to smaller lithium-air batteries April 26th, 2017

Using light to propel water : With new method, MIT engineers can control and separate fluids on a surface using only visible light April 25th, 2017

Graphene holds up under high pressure: Used in filtration membranes, ultrathin material could help make desalination more productive April 24th, 2017

Military

Nano-SPEARs gently measure electrical signals in small animals: Rice University's tiny needles simplify data gathering to probe diseases, test drugs April 17th, 2017

New technology could offer cheaper, faster food testing: Specialized droplets interact with bacteria and can be analyzed using a smartphone April 7th, 2017

Teri Odom and Richard Van Duyne Honored by Department of Defense: Each will receive $3 million over five years to conduct high-risk, high-payoff research March 31st, 2017

NIST physicists show ion pairs perform enhanced 'spooky action' March 30th, 2017

Environment

NanoMONITOR shares its latest developments concerning the NanoMONITOR Software and the Monitoring stations April 21st, 2017

Wood filter removes toxic dye from water April 21st, 2017

Making Batteries From Waste Glass Bottles: UCR researchers are turning glass bottles into high performance lithium-ion batteries for electric vehicles and personal electronics April 19th, 2017

Shedding light on the absorption of light by titanium dioxide April 14th, 2017

Research partnerships

California Research Alliance by BASF establishes more than 25 research projects in three years April 26th, 2017

Better living through pressure: Functional nanomaterials made easy April 19th, 2017

Shedding light on the absorption of light by titanium dioxide April 14th, 2017

AIM Photonics Presents Cutting-Edge Integrated Photonics Technology Developments to Packed House at OFC 2017, the Optical Networking and Communication Conference & Exhibition April 11th, 2017

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project