Nanotechnology Now

Our NanoNews Digest Sponsors





Heifer International

Wikipedia Affiliate Button


android tablet pc

Home > Press > Magnetic charge crystals imaged in artificial spin ice

3-D depiction of the honeycomb artificial spin ice topography after the annealing and cooling protocols. The light and dark colors represent the north and south magnetic poles of the islands.  Credit Ian Gilbert, Department of Physics & Frederick Seitz Materials Research Laboratory
3-D depiction of the honeycomb artificial spin ice topography after the annealing and cooling protocols. The light and dark colors represent the north and south magnetic poles of the islands.

Credit Ian Gilbert, Department of Physics & Frederick Seitz Materials Research Laboratory

Abstract:
A team of scientists, led by University of Illinois physicist Peter Schiffer, has reported direct visualization of magnetic charge crystallization in an artificial spin ice material, a first in the study of a relatively new class of frustrated artificial magnetic materials-by-design known as "Artificial Spin Ice." These charges are analogs to electrical charges with possible applications in magnetic memories and devices. The research team's findings appear in the August 29 issue of the journal Nature.

Magnetic charge crystals imaged in artificial spin ice

Urbana, IL | Posted on August 28th, 2013

The unique properties of spin ice materials have fascinated scientists since they were first discovered in the late 1990s in naturally occurring rare earth titanites. The material is aptly named: the highly complex ordering of nanoscale magnets in spin ice obey the same rules that determine the positional ordering of hydrogen and oxygen atoms in frozen water ice. Both have "spin"—degrees of freedom—with frustrated interactions that prevent complete freezing, even at absolute zero.

In 2006, an interdisciplinary team of physicists and materials scientists designed the first artificial spin ice, a two-dimensional array of magnetic nanoislands that are fabricated to interact in complex ways, depending on the chosen design of the array. The islands were lithographically printed onto a substrate, arranged in a square-lattice pattern, with the north and south poles of each nanomagnet meeting and interacting at their four-pronged vertices.

Now the same research team has developed a new annealing protocol that allows the artificial material's full potential for highly complex magnetic interactions to be realized. The new protocol was applied to two artificial spin ice materials, one configured in a square-lattice pattern, the other in a hexagonal-honeycomb pattern with three-pronged vertices.

In the honeycomb pattern, where three magnetic poles intersect, a net charge of north or south is forced at each vertex. The magnetic "monopole charge" at each vertex influences the magnetic "charge" of the surrounding vertices. The team was able to image the crystalline structure of the magnetic charges using magnetic force microscopy.

"Nanomagnets are so small that their behavior becomes relatively simple. We can arrange the magnets in a particular lattice pattern—square or honeycomb—and they interact in a way that we can predict and control," Schiffer expained. "The challenge—you have to get the nanomagnets to flip their north and south poles to show how they interact. It's hard to force them to show the effects of interaction, since they get stuck in one particular arrangement."

The research team's new annealing protocol—heating the material to a high temperature where their magnetic polarity is suppressed (here, about 550 degrees Celsius)—allows the nanomagnets to flip their polarity and freely interact. As the material cools, the nanomagnets are ordered according to the interactions of their poles at the vertices.

The collective thermal behavior of the arrays is studied through statistical mechanics, a branch of fundamental physics. As theorized, the monopole charge of each vertex was found to contribute to the order of the entire system in a manner analogous to the interactions of electric charges at the atomic scale during water ice crystal growth.

Los Alamos National Laboratory staff scientist Cristiano Nisoli explained, "The emergence of magnetic monopoles in spin ice systems is a particular case of what physicists call fractionalization, or deconfinement of quasi-particles that together are seen as comprising the fundamental unit of the system, in this case the north and south poles of a nanomagnet. We have seen how arranging magnets in a honeycomb configuration allows for these charges to be sort of ‘stripped' from the magnetic islands to which they belong and become relevant degrees of freedom."

The ability to use the magnetic charges as degrees of freedom has implications for future technological applications.

"Magnetic technology generally concerns itself with manipulation of localized dipolar degrees of freedom," Nisoli said. "The ability of building materials containing delocalized monopolar charges is very exciting with possible technological implications in data storage and computation."

An advantage of artificial spin ice is that it can be designed in different topologies, and examined subsequently to see the effects of those topologies. That allows physicists to explore a wide range of possible behaviors that are not accessible in natural crystals.

"This work demonstrates a direction in condensed matter physics that is quite opposite to what has been done in the last sixty decades or so," said Nisoli. "Instead of imagining an emergent theoretical description to model the behavior of a nature-given material and validating it indirectly, we engineer materials of desired emergent properties that can be visualized directly."

The theoretical work for this research was performed at Los Alamos National Laboratory under Cristiano Nisoli and Gia-Wei Chern, and at Penn State University under Vincent Crespi and Paul Lammert. Synthesis of the magnetic materials and the high temperature treatment was performed at the University of Minnesota's Department of Chemical Engineering and Materials Science under Chris Leighton. Magnetic measurements and lithography were performed at Penn State University and the University of Illinois' Frederick Seitz Materials Research Laboratory by graduate students Sheng Zhang and Ian Gilbert, under the direction of Peter Schiffer.

This research was supported by the U.S. Department of Energy and the National Science Foundation.

####

For more information, please click here

Contacts:
Peter Schiffer

217-333-0034

Siv Schwink
communications coordinator
Department of Physics
217/300-2201

Copyright © University of Illinois College of Engineering

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Imec Reports Four Percent Growth for 2013 Fiscal Year End —Continues to Accelerate Innovation Through Global Collaborations and Technological Breakthroughs in Nanoelectronics— April 24th, 2014

Multicapacity Microreactor for Catalyst Characterisation April 24th, 2014

Making graphene work for real-world devices: Fundamental research in phonon scattering helps researchers design graphene materials for applications April 24th, 2014

Return on investment for kit and promotion materials April 24th, 2014

Laboratories

Atomic switcheroo explains origins of thin-film solar cell mystery April 23rd, 2014

Berkeley Lab Researchers Demonstrate First Size-based Chromatography Technique for the Study of Living Cells April 22nd, 2014

Physics

Economics = MC2 -- A portrait of the modern physics startup: Successful companies founded by physicists often break the Silicon Valley model, according to new American Institute of Physics report April 23rd, 2014

A new key to unlocking the mysteries of physics? Quantum turbulence April 21st, 2014

Imaging

Guo Lab Shows Potential of RNA as Heat-resistant Polymer Material for Nanoarchitectures April 23rd, 2014

Berkeley Lab Researchers Demonstrate First Size-based Chromatography Technique for the Study of Living Cells April 22nd, 2014

Govt.-Legislation/Regulation/Funding/Policy

Imec Reports Four Percent Growth for 2013 Fiscal Year End —Continues to Accelerate Innovation Through Global Collaborations and Technological Breakthroughs in Nanoelectronics— April 24th, 2014

Making graphene work for real-world devices: Fundamental research in phonon scattering helps researchers design graphene materials for applications April 24th, 2014

Atomic switcheroo explains origins of thin-film solar cell mystery April 23rd, 2014

High-Performance, Low-Cost Ultracapacitors Built with Graphene and Carbon Nanotubes: Future devices based on technology could bridge gap between batteries and conventional capacitors in portable electronics and hybrid electric vehicles April 23rd, 2014

Discoveries

Making graphene work for real-world devices: Fundamental research in phonon scattering helps researchers design graphene materials for applications April 24th, 2014

Return on investment for kit and promotion materials April 24th, 2014

Protecting olive oil from counterfeiters April 24th, 2014

Gold nanoparticles help target, quantify breast cancer gene segments in a living cell April 23rd, 2014

Announcements

Imec Reports Four Percent Growth for 2013 Fiscal Year End —Continues to Accelerate Innovation Through Global Collaborations and Technological Breakthroughs in Nanoelectronics— April 24th, 2014

Multicapacity Microreactor for Catalyst Characterisation April 24th, 2014

Making graphene work for real-world devices: Fundamental research in phonon scattering helps researchers design graphene materials for applications April 24th, 2014

Return on investment for kit and promotion materials April 24th, 2014

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals

Making graphene work for real-world devices: Fundamental research in phonon scattering helps researchers design graphene materials for applications April 24th, 2014

Return on investment for kit and promotion materials April 24th, 2014

Protecting olive oil from counterfeiters April 24th, 2014

High-Performance, Low-Cost Ultracapacitors Built with Graphene and Carbon Nanotubes: Future devices based on technology could bridge gap between batteries and conventional capacitors in portable electronics and hybrid electric vehicles April 23rd, 2014

Tools

Multicapacity Microreactor for Catalyst Characterisation April 24th, 2014

Characterizing inkjet inks: Malvern Instruments presents new rheological research April 23rd, 2014

MRI, on a molecular scale: Researchers develop system that could one day peer into the atomic structure of individual molecules April 20th, 2014

Oxford Instruments Asylum Research Introduces the MFP-3D InfinityTM AFM Featuring Powerful New Capabilities and Stunning High Performance April 18th, 2014

Research partnerships

University of Waterloo Visits China to Strengthen Bonds With Research Partners April 21st, 2014

Novel stapled peptide nanoparticle combination prevents RSV infection, study finds April 17th, 2014

Scientists Capture Ultrafast Snapshots of Light-Driven Superconductivity: X-rays reveal how rapidly vanishing 'charge stripes' may be behind laser-induced high-temperature superconductivity April 16th, 2014

Scalable CVD process for making 2-D molybdenum diselenide: Rice, NTU scientists unveil CVD production for coveted 2-D semiconductor April 8th, 2014

NanoNews-Digest
The latest news from around the world, FREE







  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More














ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2014 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE