Nanotechnology Now

Our NanoNews Digest Sponsors


Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > Magnetic charge crystals imaged in artificial spin ice

3-D depiction of the honeycomb artificial spin ice topography after the annealing and cooling protocols. The light and dark colors represent the north and south magnetic poles of the islands.  Credit Ian Gilbert, Department of Physics & Frederick Seitz Materials Research Laboratory
3-D depiction of the honeycomb artificial spin ice topography after the annealing and cooling protocols. The light and dark colors represent the north and south magnetic poles of the islands.

Credit Ian Gilbert, Department of Physics & Frederick Seitz Materials Research Laboratory

Abstract:
A team of scientists, led by University of Illinois physicist Peter Schiffer, has reported direct visualization of magnetic charge crystallization in an artificial spin ice material, a first in the study of a relatively new class of frustrated artificial magnetic materials-by-design known as "Artificial Spin Ice." These charges are analogs to electrical charges with possible applications in magnetic memories and devices. The research team's findings appear in the August 29 issue of the journal Nature.

Magnetic charge crystals imaged in artificial spin ice

Urbana, IL | Posted on August 28th, 2013

The unique properties of spin ice materials have fascinated scientists since they were first discovered in the late 1990s in naturally occurring rare earth titanites. The material is aptly named: the highly complex ordering of nanoscale magnets in spin ice obey the same rules that determine the positional ordering of hydrogen and oxygen atoms in frozen water ice. Both have "spin"—degrees of freedom—with frustrated interactions that prevent complete freezing, even at absolute zero.

In 2006, an interdisciplinary team of physicists and materials scientists designed the first artificial spin ice, a two-dimensional array of magnetic nanoislands that are fabricated to interact in complex ways, depending on the chosen design of the array. The islands were lithographically printed onto a substrate, arranged in a square-lattice pattern, with the north and south poles of each nanomagnet meeting and interacting at their four-pronged vertices.

Now the same research team has developed a new annealing protocol that allows the artificial material's full potential for highly complex magnetic interactions to be realized. The new protocol was applied to two artificial spin ice materials, one configured in a square-lattice pattern, the other in a hexagonal-honeycomb pattern with three-pronged vertices.

In the honeycomb pattern, where three magnetic poles intersect, a net charge of north or south is forced at each vertex. The magnetic "monopole charge" at each vertex influences the magnetic "charge" of the surrounding vertices. The team was able to image the crystalline structure of the magnetic charges using magnetic force microscopy.

"Nanomagnets are so small that their behavior becomes relatively simple. We can arrange the magnets in a particular lattice pattern—square or honeycomb—and they interact in a way that we can predict and control," Schiffer expained. "The challenge—you have to get the nanomagnets to flip their north and south poles to show how they interact. It's hard to force them to show the effects of interaction, since they get stuck in one particular arrangement."

The research team's new annealing protocol—heating the material to a high temperature where their magnetic polarity is suppressed (here, about 550 degrees Celsius)—allows the nanomagnets to flip their polarity and freely interact. As the material cools, the nanomagnets are ordered according to the interactions of their poles at the vertices.

The collective thermal behavior of the arrays is studied through statistical mechanics, a branch of fundamental physics. As theorized, the monopole charge of each vertex was found to contribute to the order of the entire system in a manner analogous to the interactions of electric charges at the atomic scale during water ice crystal growth.

Los Alamos National Laboratory staff scientist Cristiano Nisoli explained, "The emergence of magnetic monopoles in spin ice systems is a particular case of what physicists call fractionalization, or deconfinement of quasi-particles that together are seen as comprising the fundamental unit of the system, in this case the north and south poles of a nanomagnet. We have seen how arranging magnets in a honeycomb configuration allows for these charges to be sort of ‘stripped' from the magnetic islands to which they belong and become relevant degrees of freedom."

The ability to use the magnetic charges as degrees of freedom has implications for future technological applications.

"Magnetic technology generally concerns itself with manipulation of localized dipolar degrees of freedom," Nisoli said. "The ability of building materials containing delocalized monopolar charges is very exciting with possible technological implications in data storage and computation."

An advantage of artificial spin ice is that it can be designed in different topologies, and examined subsequently to see the effects of those topologies. That allows physicists to explore a wide range of possible behaviors that are not accessible in natural crystals.

"This work demonstrates a direction in condensed matter physics that is quite opposite to what has been done in the last sixty decades or so," said Nisoli. "Instead of imagining an emergent theoretical description to model the behavior of a nature-given material and validating it indirectly, we engineer materials of desired emergent properties that can be visualized directly."

The theoretical work for this research was performed at Los Alamos National Laboratory under Cristiano Nisoli and Gia-Wei Chern, and at Penn State University under Vincent Crespi and Paul Lammert. Synthesis of the magnetic materials and the high temperature treatment was performed at the University of Minnesota's Department of Chemical Engineering and Materials Science under Chris Leighton. Magnetic measurements and lithography were performed at Penn State University and the University of Illinois' Frederick Seitz Materials Research Laboratory by graduate students Sheng Zhang and Ian Gilbert, under the direction of Peter Schiffer.

This research was supported by the U.S. Department of Energy and the National Science Foundation.

####

For more information, please click here

Contacts:
Peter Schiffer

217-333-0034

Siv Schwink
communications coordinator
Department of Physics
217/300-2201

Copyright © University of Illinois College of Engineering

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Oxford Instruments Asylum Research and McGill University Announce the McGill AFM Summer School and Workshop, May 12-13, 2016 May 4th, 2016

The intermediates in a chemical reaction photographed 'red-handed' Researchers at the UPV/EHU-University of the Basque Country have for the first time succeeded in imaging all the steps in a complex organic reaction and have resolved the mechanisms that explain it May 4th, 2016

Quantum sensors for high-precision magnetometry of superconductors May 3rd, 2016

Imaging

Oxford Instruments Asylum Research and McGill University Announce the McGill AFM Summer School and Workshop, May 12-13, 2016 May 4th, 2016

The intermediates in a chemical reaction photographed 'red-handed' Researchers at the UPV/EHU-University of the Basque Country have for the first time succeeded in imaging all the steps in a complex organic reaction and have resolved the mechanisms that explain it May 4th, 2016

New tool allows scientists to visualize 'nanoscale' processes May 4th, 2016

Physics

An Experiment Seeks to Make Quantum Physics Visible to the Naked Eye May 3rd, 2016

Quantum sensors for high-precision magnetometry of superconductors May 3rd, 2016

Superfast light source made from artificial atom April 28th, 2016

Laboratories

Exploring phosphorene, a promising new material April 29th, 2016

NREL finds nanotube semiconductors well-suited for PV systems April 27th, 2016

NREL theory establishes a path to high-performance 2-D semiconductor devices April 27th, 2016

Govt.-Legislation/Regulation/Funding/Policy

New tool allows scientists to visualize 'nanoscale' processes May 4th, 2016

A compact, efficient single photon source that operates at ambient temperatures on a chip: Highly directional single photon source concept is expected to lead to a significant progress in producing compact, cheap, and efficient sources of quantum information bits for future appls May 3rd, 2016

Little ANTs: Researchers build the world's tiniest engine May 3rd, 2016

An Experiment Seeks to Make Quantum Physics Visible to the Naked Eye May 3rd, 2016

Discoveries

The intermediates in a chemical reaction photographed 'red-handed' Researchers at the UPV/EHU-University of the Basque Country have for the first time succeeded in imaging all the steps in a complex organic reaction and have resolved the mechanisms that explain it May 4th, 2016

New tool allows scientists to visualize 'nanoscale' processes May 4th, 2016

A compact, efficient single photon source that operates at ambient temperatures on a chip: Highly directional single photon source concept is expected to lead to a significant progress in producing compact, cheap, and efficient sources of quantum information bits for future appls May 3rd, 2016

Nuclear pores captured on film: Using an ultra fast-scanning atomic force microscope, researchers from the University of Basel have filmed 'living' nuclear pore complexes at work for the first time May 3rd, 2016

Announcements

Oxford Instruments Asylum Research and McGill University Announce the McGill AFM Summer School and Workshop, May 12-13, 2016 May 4th, 2016

The intermediates in a chemical reaction photographed 'red-handed' Researchers at the UPV/EHU-University of the Basque Country have for the first time succeeded in imaging all the steps in a complex organic reaction and have resolved the mechanisms that explain it May 4th, 2016

New tool allows scientists to visualize 'nanoscale' processes May 4th, 2016

FEI Launches Apreo – Industry-Leading Versatile, High-Performance SEM: The Apreo SEM provides high-resolution surface information with excellent contrast, and the flexibility to accommodate a large range of samples, applications and conditions May 4th, 2016

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers

The intermediates in a chemical reaction photographed 'red-handed' Researchers at the UPV/EHU-University of the Basque Country have for the first time succeeded in imaging all the steps in a complex organic reaction and have resolved the mechanisms that explain it May 4th, 2016

New tool allows scientists to visualize 'nanoscale' processes May 4th, 2016

Little ANTs: Researchers build the world's tiniest engine May 3rd, 2016

An Experiment Seeks to Make Quantum Physics Visible to the Naked Eye May 3rd, 2016

Tools

Oxford Instruments Asylum Research and McGill University Announce the McGill AFM Summer School and Workshop, May 12-13, 2016 May 4th, 2016

The intermediates in a chemical reaction photographed 'red-handed' Researchers at the UPV/EHU-University of the Basque Country have for the first time succeeded in imaging all the steps in a complex organic reaction and have resolved the mechanisms that explain it May 4th, 2016

New tool allows scientists to visualize 'nanoscale' processes May 4th, 2016

FEI Launches Apreo – Industry-Leading Versatile, High-Performance SEM: The Apreo SEM provides high-resolution surface information with excellent contrast, and the flexibility to accommodate a large range of samples, applications and conditions May 4th, 2016

Research partnerships

The intermediates in a chemical reaction photographed 'red-handed' Researchers at the UPV/EHU-University of the Basque Country have for the first time succeeded in imaging all the steps in a complex organic reaction and have resolved the mechanisms that explain it May 4th, 2016

Making invisible physics visible: The Jayich Lab has created a new sensor technology that captures nanoscale images with high spatial resolution and sensitivity May 2nd, 2016

Cooling graphene-based film close to pilot-scale production April 30th, 2016

Personal cooling units on the horizon April 29th, 2016

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







Car Brands
Buy website traffic