Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > Molecular motors: Power much less than expected?

Researchers at the Institute of Physical Chemistry of the Polish Academy of Sciences in Warsaw have measured power generated by molecular machines -- collectively rotating molecules of liquid crystals in a monomolecular layer on the surface of water.

Credit: IPC PAS, Grzegorz Krzyżewski
Researchers at the Institute of Physical Chemistry of the Polish Academy of Sciences in Warsaw have measured power generated by molecular machines -- collectively rotating molecules of liquid crystals in a monomolecular layer on the surface of water. Credit: IPC PAS, Grzegorz Krzyżewski

Abstract:
An innovative measurement method was used at the Institute of Physical Chemistry of the Polish Academy of Sciences in Warsaw for estimating power generated by motors of single molecule in size, comprising a few dozens of atoms only. The findings of the study are of crucial importance for construction of future nanometer machines - and they do not instil optimism.

Molecular motors: Power much less than expected?

Warsaw, Poland | Posted on August 28th, 2013

Nanomachines are devices of the future. Composed of a very little number of atoms, they would be in the range of billionth parts of a meter in size. Construction of efficient nanomachines would lead most likely to another civilization revolution. That's why researchers around the world look at various molecules trying to put them at mechanical work.

Researchers from the Institute of Physical Chemistry of the Polish Academy of Sciences (IPC PAS) in Warsaw were among the first to have measured the efficiencies of molecular machines composed of a few dozen of atoms. "Everything points to the belief that the power of motors composed of single, relatively small molecules is considerably less than expected", says Dr Andrzej Żywociński from the IPC PAS, one of the co-authors of the paper published in the "Nanoscale" journal.

Molecular motors studied at the IPC PAS are molecules of smectic C*-type liquid crystals, composed of a few tens of atoms (each molecule is 2.8 nanometer long). After depositing on the surface of water, the molecules, under appropriate conditions, form spontaneously the thinnest layer possible - a monomolecular layer of specific structure and properties. Each liquid crystal molecule is composed of a chain with its hydrophilic terminal anchored on the surface of water. A relatively long, tilted hydrophobic part protrudes over the surface. So, monomolecular layer resembles a forest with trees growing at certain angle. The free terminal of each chain includes two crosswise arranged groups of atoms with different sizes, forming a two-blade propeller with blades of different lengths. When evaporating water molecules strike the "propellers", the entire chain starts to rotate around its "anchor" due to asymmetry.

Specific properties of liquid crystals and the conditions of experiment give rise to an in-phase motion of adjacent molecules in the monolayer. It is estimated that "tracts of the forest" of up to one trillion (10^12) molecules, forming areas of millimeter sizes on the surface of water, are able to synchronise their rotations. "Moreover, the molecules we studied were rotating very slowly. One rotation could be as long as a few seconds up to a few minutes. This is a much desired property. Would the molecules be rotating with, for instance, megahertz frequencies, their energy could be hardly transferred on larger objects", explains Dr Żywociński.

Earlier power estimations for molecular nanomotors were related either to much larger molecules, or to motors powered by chemical reactions. In addition, these estimations did not account for the resistance of the medium where the molecules worked.

Free, collective rotations of liquid crystal molecules on the surface of water can be easily observed and measured. Researchers from the IPC PAS checked how the speed of rotation changes as a function of temperature; they estimated also changes in (rotational) viscosity in the system under study. It turned out that the energy of single molecule motion generated during one rotation is very low: just 3.510^-28 joule. This value is as many as ten million times lower than the thermal motion energy.

"Our measurements are a bucket of cold water for designers of molecular nanomachines", notices Prof. Robert Hołyst (IPC PAS).

In spite of generating low power, rotating liquid crystal molecules can find practical applications. This is due to the fact that a large ensemble of collectively rotating molecules generates a correspondingly higher power. Moreover, a single square centimeter of the surface of water can accommodate many such ensembles with trillions of molecules each.

The same research at the IPC PAS included also a comparison of power generated by rotating molecules of liquid crystals with the power of a single biological motor - a very large molecule known as adenosinetriphosphatase (ATPase). The enzyme plays a role of sodium-potassium pump in animal cells. With appropriate calculations it was estimated that the density of energy generated in a volume unit was about 100,000 times higher for ATPase than for rotating liquid crystals.

"It took millions of years for evolution to develop such an efficient molecular pump. We, humans, have been working with molecular machines for a couple or maybe a dozen of years only", comments Prof. Hołyst and adds: "Give us just a bit of time".

This press release was prepared thanks to the NOBLESSE grant under the activity "Research potential" of the 7th Framework Programme of the European Union.

####

About Institute of Physical Chemistry of the Polish Academy of Sciences
The Institute of Physical Chemistry of the Polish Academy of Sciences was established in 1955 as one of the first chemical institutes of the PAS. The Institute's scientific profile is strongly related to the newest global trends in the development of physical chemistry and chemical physics. Scientific research is conducted in nine scientific departments. CHEMIPAN R&D Laboratories, operating as part of the Institute, implement, produce and commercialise specialist chemicals to be used, in particular, in agriculture and pharmaceutical industry. The Institute publishes approximately 200 original research papers annually.

For more information, please click here

Contacts:
Dr. Andrzej Zywocinski

Copyright © Institute of Physical Chemistry of the Polish Academy of Sci

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Harris & Harris Group Notes Announcements by Its Portfolio Companies During the Third Quarter of 2016 September 30th, 2016

INVECAS to Enable ASIC Designs for Tomorrows Intelligent Systems on GLOBALFOUNDRIES' FDX Technology: INVECAS to Collaborate with GLOBALFOUNDRIES to Provide IP and End-to-End ASIC Design Services on 22FDX and 12FDX Technologies September 30th, 2016

How to power up graphene implants without frying cells: New analysis finds way to safely conduct heat from graphene to biological tissues September 30th, 2016

Innovation in Nanotechnology is Focus of Symposium: Annual event brings international experts to Northwestern Oct. 6 September 29th, 2016

Cambrios at CEATEC - Japan 2016 September 29th, 2016

Display technology/LEDs/SS Lighting/OLEDs

Cambrios at CEATEC - Japan 2016 September 29th, 2016

Leti and Taiwanese Tech Organizations Sponsoring Workshop in Taipei on MEMS, IoT, Smart Lighting Applications, System Reliability & Security September 28th, 2016

Laboratories

Crystalline Fault Lines Provide Pathway for Solar Cell Current: New tomographic AFM imaging technique reveals that microstructural defects, generally thought to be detrimental, actually improve conductivity in cadmium telluride solar cells September 26th, 2016

NIST Patents Single-Photon Detector for Potential Encryption and Sensing Apps September 16th, 2016

Electron beam microscope directly writes nanoscale features in liquid with metal ink September 16th, 2016

World's most powerful X-ray takes a 'sledgehammer' to molecules September 14th, 2016

Govt.-Legislation/Regulation/Funding/Policy

How to power up graphene implants without frying cells: New analysis finds way to safely conduct heat from graphene to biological tissues September 30th, 2016

Crystalline Fault Lines Provide Pathway for Solar Cell Current: New tomographic AFM imaging technique reveals that microstructural defects, generally thought to be detrimental, actually improve conductivity in cadmium telluride solar cells September 26th, 2016

Tattoo therapy could ease chronic disease: Rice-made nanoparticles tested at Baylor College of Medicine may help control autoimmune diseases September 23rd, 2016

PHENOMEN is a FET-Open Research Project aiming to lay the foundations a new information technology September 19th, 2016

Molecular Machines

NIST illuminates transfer of nanoscale motion through microscale machine September 14th, 2016

Measuring forces in the DNA molecule: First direct measurements of base-pair bonding strength September 13th, 2016

A versatile method to pattern functionalized nanowires: A team of researchers from Hokkaido University has developed a versatile method to pattern the structure of 'nanowires,' providing a new tool for the development of novel nanodevices September 9th, 2016

Legions of nanorobots target cancerous tumors with precision: Administering anti-cancer drugs redefined August 16th, 2016

Molecular Nanotechnology

On-surface chemistry leads to novel products: On-surface chemical Reactions can lead to novel chemical compounds not yet synthesized by solution chemistry. September 13th, 2016

Measuring forces in the DNA molecule: First direct measurements of base-pair bonding strength September 13th, 2016

A versatile method to pattern functionalized nanowires: A team of researchers from Hokkaido University has developed a versatile method to pattern the structure of 'nanowires,' providing a new tool for the development of novel nanodevices September 9th, 2016

Location matters in the self-assembly of nanoclusters: Iowa State University scientists have developed a new formulation to explain an aspect of the self-assembly of nanoclusters on surfaces that has broad applications for nanotechnology September 8th, 2016

Announcements

Harris & Harris Group Notes Announcements by Its Portfolio Companies During the Third Quarter of 2016 September 30th, 2016

INVECAS to Enable ASIC Designs for Tomorrows Intelligent Systems on GLOBALFOUNDRIES' FDX Technology: INVECAS to Collaborate with GLOBALFOUNDRIES to Provide IP and End-to-End ASIC Design Services on 22FDX and 12FDX Technologies September 30th, 2016

How to power up graphene implants without frying cells: New analysis finds way to safely conduct heat from graphene to biological tissues September 30th, 2016

Innovation in Nanotechnology is Focus of Symposium: Annual event brings international experts to Northwestern Oct. 6 September 29th, 2016

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







Car Brands
Buy website traffic