Nanotechnology Now

Our NanoNews Digest Sponsors





Heifer International

Wikipedia Affiliate Button


android tablet pc

Home > Press > First report of real-time manipulation and control of nuclear spin noise

Abstract:
Basel Physicists in collaboration with Dutch researchers have demonstrated a new method for polarizing nuclear spins in extremely small samples. By Monitoring and controlling spin fluctuations, the method may provide a route for enhancing the resolution of magnetic resonance imaging (MRI) on the nanometer-scale, allowing researchers to make 3D images of smaller objects than ever before. The results have been published in the journal «Nature Physics».

First report of real-time manipulation and control of nuclear spin noise

Basel, Switzerland | Posted on August 26th, 2013

Many of the elements that make up the matter around us, such as hydrogen or phosphorus, contain a magnetic nucleus at the center of each atom. This nucleus acts like a tiny magnet with a north and south pole. By applying a large magnetic field, the poles of these nuclei align along the magnetic field, producing a so-called nuclear spin polarization.

When the nuclei are irradiated with electromagnetic impulses (radio waves) at a very specific frequency, they change their direction away from the magnetic field. Because they are magnetic, the nuclei then start turning back. As they do so, they emit the energy they had previously absorbed through the radio waves. With a special antenna these signals can be detected.

This method is called nuclear magnetic resonance (NMR) and can provide very useful information about a sample, such as its chemical composition or structure. The method also forms the basis of magnetic resonance imaging (MRI), which can make 3D images of the density of an object and is often used on patients in hospitals.

However, for very small objects (i.e. smaller than a single cell) containing a small number of nuclei, the natural fluctuations of the nuclear spin polarization actually become larger than the polarization produced by a large magnetic field. These deviations are known as «spin noise». The fact that spin noise is so dominant at small scales is one of the reasons why measuring NMR and MRI in very small objects is so difficult.

Monitoring, controlling and capturing
The team led by Prof. Martino Poggio from the University of Basel in Switzerland has now demonstrated, together with scientists from Eindhoven University of Technology and Delft University of Technology in the Netherlands, a method for creating polarization order from such random fluctuations. By monitoring, controlling, and capturing statistical spin fluctuations, the team produced polarizations that were much larger than what can be created by applying a magnetic field.

This is the first report of the real-time manipulation, control, and capture of fluctuations arising from nuclear spin noise. The results are immediately relevant to recent technical advances that have dramatically reduced the possible detection volumes of NMR measurements. «Improved understanding of these phenomena may lead to new high resolution nano- and atomic-scale imaging techniques», explains Poggio. The Basel method may provide a route for enhancing the sensitivity of nanometer-scale magnetic resonance imaging (MRI) or possibly for the implementation of solid-state quantum computers.

Further Implications
The method's ability to reduce nuclear spin polarization fluctuations may also be useful to enhance the coherence time of solid-state qubits. Qubits are units of quantum information used in quantum computers. Qubits implemented in the solid-state - especially in structures called quantum dots - are very susceptible to fluctuations in nuclear polarization: even tiny variations in the nuclear polarization destroy a qubit's coherence. Therefore, the ability to control these fluctuations may extend qubit coherence times and thus help in the on-going development of solid-state quantum computers. Poggio points out that his «approach to capture and store spin fluctuations is generally applicable to any technique capable of detecting and addressing nanometer-scale volumes of nuclear spins in real-time».

The study was supported by the Canton Aargau, the Swiss National Science Foundation (SNF), the Swiss Nanoscience Institute (SNI), and the National Center of Competence in Research for Quantum Science and Technology (QSIT).

####

For more information, please click here

Contacts:
Olivia Poisson


University of Basel
Communications Office
Petersgraben 35, Postfach
4003 Basel
Switzerland
Tel. +41 61 267 30 17
Fax +41 61 267 30 13

Copyright © University of Basel

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

Original Citation

doi: 10.1038/nphys2731:

Related News Press

Imaging

National Synchrotron Light Source II Achieves 'First Light' October 23rd, 2014

News and information

Novel Rocket Design Flight Tested: New Rocket Propellant and Motor Design Offers High Performance and Safety October 23rd, 2014

MEMS & Sensors Technology Showcase: Finalists Announced for MEMS Executive Congress US 2014 October 23rd, 2014

Nanoparticle technology triples the production of biogas October 23rd, 2014

SUNY Polytechnic Institute Invites the Public to Attend its Popular Statewide 'NANOvember' Series of Outreach and Educational Events October 23rd, 2014

Physics

Solid nanoparticles can deform like a liquid: Unexpected finding shows tiny particles keep their internal crystal structure while flexing like droplets October 12th, 2014

Unconventional photoconduction in an atomically thin semiconductor: New mechanism of photoconduction could lead to next-generation excitonic devices October 9th, 2014

Nanoparticles Break the Symmetry of Light October 6th, 2014

Quantum environmentalism: Putting a qubit's surroundings to good use October 2nd, 2014

Govt.-Legislation/Regulation/Funding/Policy

Novel Rocket Design Flight Tested: New Rocket Propellant and Motor Design Offers High Performance and Safety October 23rd, 2014

Strengthening thin-film bonds with ultrafast data collection October 23rd, 2014

Brookhaven Lab Launches Computational Science Initiative:Leveraging computational science expertise and investments across the Laboratory to tackle "big data" challenges October 22nd, 2014

Bipolar Disorder Discovery at the Nano Level: Tiny structures found in brain synapses help scientists better understand disorder October 22nd, 2014

Quantum Computing

1980s aircraft helps quantum technology take flight October 20th, 2014

Australian teams set new records for silicon quantum computing October 12th, 2014

Ultrafast remote switching of light emission October 2nd, 2014

Quantum environmentalism: Putting a qubit's surroundings to good use October 2nd, 2014

Discoveries

Iranian Scientists Apply Nanotechnology to Produce Surgery Suture October 23rd, 2014

Iranian, Malaysian Scientists Study Nanophotocatalysts for Water Purification October 23rd, 2014

Nanoparticle technology triples the production of biogas October 23rd, 2014

Strengthening thin-film bonds with ultrafast data collection October 23rd, 2014

Announcements

Nanoparticle technology triples the production of biogas October 23rd, 2014

SUNY Polytechnic Institute Invites the Public to Attend its Popular Statewide 'NANOvember' Series of Outreach and Educational Events October 23rd, 2014

Advancing thin film research with nanostructured AZO: Innovnano’s unique and cost-effective AZO sputtering targets for the production of transparent conducting oxides October 23rd, 2014

Strengthening thin-film bonds with ultrafast data collection October 23rd, 2014

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals

NYU Researchers Break Nano Barrier to Engineer the First Protein Microfiber October 23rd, 2014

Iranian Scientists Apply Nanotechnology to Produce Surgery Suture October 23rd, 2014

Iranian, Malaysian Scientists Study Nanophotocatalysts for Water Purification October 23rd, 2014

Strengthening thin-film bonds with ultrafast data collection October 23rd, 2014

NanoNews-Digest
The latest news from around the world, FREE





  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More














ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2014 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE