Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > Alivisatos appointed Samsung Distinguished Chair in Nanoscience

Paul Alivisatos, the newly named Samsung Distinguished Chair in Nanoscience and Nanotechnology, in conversation with Dr. Young Hwan Kim of the Samsung Advanced Institute of Technology, Korea, at Alivisatosís lab on the UC Berkeley campus. A delegation from SAIT visited UC Berkeley Thursday, Aug. 22.Photo by Roy Kaltschmidt, Berkeley Lab
Paul Alivisatos, the newly named Samsung Distinguished Chair in Nanoscience and Nanotechnology, in conversation with Dr. Young Hwan Kim of the Samsung Advanced Institute of Technology, Korea, at Alivisatosís lab on the UC Berkeley campus. A delegation from SAIT visited UC Berkeley Thursday, Aug. 22.

Photo by Roy Kaltschmidt, Berkeley Lab

Abstract:
Chemist Paul Alivisatos, one of the pioneers of nanoscience, has been appointed to the Samsung Distinguished Chair in Nanoscience and Nanotechnology at UC Berkeley in recognition of his many scientific achievements.

Alivisatos appointed Samsung Distinguished Chair in Nanoscience

Berkeley, CA | Posted on August 24th, 2013

The endowed chair, established through the support of Samsung Electronics Co., will help cement the campus's leadership in research and innovation in an area that has great implications for many fields ranging from biology to energy, the Office of the Vice-Chancellor for Research announced Friday (Aug. 23). Alivisatos, director of the Lawrence Berkeley National Laboratory and a UC Berkeley professor of chemistry, is known for his research into quantum dot semiconductor nanocrystals, clusters of hundreds to thousands of atoms with novel properties that can be applied to electronic devices and solar cells as well as light-emitting diodes (LEDs).

Dr. Youngjoon Gil, executive vice president of the Samsung Advanced Institute of Technology, welcomed the appointment.

"Historically, the invention of a new material can initiate a quantum leap in the development of industry," said Dr. Gil. "Nanomaterials offer such opportunities for the electronics as well as the biosciences industry, where precise control and manipulation of energy is required. Quantum dot, pioneered by Professor Alivisatos, has established its commercial value by reproducing more realistic colors on displays. Through the establishment of the endowed chair, Samsung anticipates a closer partnership with UC Berkeley, the world's leader in nanoscience, in exploring the commercial value of nanotechnology."

Over the past two decades, UC Berkeley has become a brain trust in nanoscience and nanotechnology, with nearly a hundred nanoscience and nanotech researchers in the fields of biology, chemistry, physics and materials science. These researchers have made major advances in understanding the nano-scale molecular motors that move materials around inside cells or manipulate DNA; creating tiny motors, lasers and photonic devices for smaller electronic circuits; creating flexible and inexpensive solar cells from nanorods; and understanding the properties of new materials such as graphene and high-temperature superconductors.

Graham Fleming, UC Berkeley's vice chancellor for research, lauded Samsung for its initiative in establishing this chair.

"The new chair helps build on our strengths in the conversation and utilization of energy on the nano scale," said Fleming. "It is a fitting recognition of Paul's achievements and his world-wide influence on the field of nanoscience. We look forward to continue expanding our relationship with Samsung in this area."

Alivisatos is widely recognized for his contributions to the study of nanocrystals, ranging from control of their synthesis and fabrication to studies of their optical, electrical, structural, and thermodynamic properties. He demonstrated that semiconductor nanocrystals can be grown into rods as opposed to spheres. This achievement paved the way for a slew of new synthetic advances, developing methods for controlling the shape, connectivity and topology of nanocrystals.

Nanocrystals are typically a few nanometers in diameter ó larger than molecules but smaller than bulk solids ó and frequently exhibit physical and chemical properties somewhere in between. Given that a nanocrystal is virtually all surface and no interior, its properties can vary considerably as the crystal grows.

Alivisatos's research has opened the door to a number of potential new applications for nanocrystals. These include their use as fluorescent probes for the study of biological materials and LEDs, and the fabrication of hybrid solar cells that combine nanotechnology with plastic electronics.

####

For more information, please click here

Contacts:
Andy Pino
Director of Communications and Media Relations
University of California, Berkeley
Office of Public Affairs
Direct: (510) 642-3591
Cell: (510) 704-3774

Copyright © UC Berkeley

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Researchers use sound waves to advance optical communication January 22nd, 2018

Piecework at the nano assembly line: Electric fields drive nano-motors a 100,000 times faster than previous methods January 22nd, 2018

Thanks for the memory: NIST takes a deep look at memristors January 20th, 2018

Arrowhead Pharmaceuticals Announces Pricing of Underwritten Public Offering of Common Stock January 18th, 2018

Chemistry

Nanowrinkles could save billions in shipping and aquaculture Surfaces inspired by carnivorous plants delay degradation by marine fouling January 17th, 2018

'Gyroscope' molecules form crystal that's both solid and full of motion: New type of molecular machine designed by UCLA researchers could have wide-ranging applications in technology and science January 16th, 2018

Paving the way for a non-electric battery to store solar energy: UMass Amherst scientists say a polymer chain organized like a string of Christmas lights assists energy storage December 22nd, 2017

UCLA chemists synthesize narrow ribbons of graphene using only light and heat: Tiny structures could be next-generation solution for smaller electronic devices December 8th, 2017

Display technology/LEDs/SS Lighting/OLEDs

Chinese market opens up for Carbodeon nanodiamonds: Carbodeon granted Chinese Patent for Nanodiamond-containing Thermoplastic Thermal Compounds December 4th, 2017

Graphene oxide making any material suitable to create biosensors: Scientists from Tomsk Polytechnic University have developed a new tool for biomedical research focused on single-cell investigation November 27th, 2017

The next generation of power electronics? Gallium nitride doped with beryllium: How to cut down energy loss in power electronics? The right kind of doping November 9th, 2017

Atomic scale Moirť patterns to push electronic boundaries? November 1st, 2017

Academic/Education

LuleŚ University of Technology is using the Deben CT5000TEC stage to perform x-ray microtomography experiments with the ZEISS Xradia 510 Versa to understand deformation and strain inside inhomogeneous materials November 7th, 2017

Park Systems Announces the Grand Opening of the Park NanoScience Center at SUNY Polytechnic Institute November 3rd, 2017

Two Scientists Receive Grants to Develop New Materials: Chad Mirkin and Monica Olvera de la Cruz recognized by Sherman Fairchild Foundation August 16th, 2017

Moving at the Speed of Light: University of Arizona selected for high-impact, industrial demonstration of new integrated photonic cryogenic datalink for focal plane arrays: Program is major milestone for AIM Photonics August 10th, 2017

Announcements

Researchers use sound waves to advance optical communication January 22nd, 2018

Piecework at the nano assembly line: Electric fields drive nano-motors a 100,000 times faster than previous methods January 22nd, 2018

Thanks for the memory: NIST takes a deep look at memristors January 20th, 2018

Arrowhead Pharmaceuticals Announces Pricing of Underwritten Public Offering of Common Stock January 18th, 2018

Appointments/Promotions/New hires/Resignations/Deaths

Ocean Optics Grows Sales Organization with Executive Appointments: Henry Langston promoted, Christine Stannard joins spectral sensing product developer December 23rd, 2017

Emmanuel Sabonnadiere is Letiís New CEO November 28th, 2017

Nanometrics Board of Directors Names Pierre-Yves Lesaicherre President and CEO November 14th, 2017

180 Degree Capital Corp. Appoints Investment Banking Veteran Parker Weil to Its Board of Directors August 2nd, 2017

Energy

Ultrathin black phosphorus for solar-driven hydrogen economy: Osaka University researchers use sunlight to make hydrogen with a new nanostructured catalyst based on nanosheets of black phosphorus and bismuth vanadate January 17th, 2018

New catalyst for hydrogen production is a step toward clean fuel: Carbon-based nanocomposite with embedded metal ions yields impressive performance as catalyst for electrolysis of water to generate hydrogen January 16th, 2018

Rice U.'s one-step catalyst turns nitrates into water and air: NSF-funded NEWT Center aims for catalytic converter for nitrate-polluted water January 5th, 2018

Tweaking quantum dots powers-up double-pane solar windows: Engineered quantum dots could bring down the cost of solar electricity January 2nd, 2018

Grants/Sponsored Research/Awards/Scholarships/Gifts/Contests/Honors/Records

New catalyst for hydrogen production is a step toward clean fuel: Carbon-based nanocomposite with embedded metal ions yields impressive performance as catalyst for electrolysis of water to generate hydrogen January 16th, 2018

The nanoscopic structure that locks up our genes January 16th, 2018

Nanotube fibers in a jiffy: Rice University lab makes short nanotube samples by hand to dramatically cut production time January 11th, 2018

Teachers in Space, Inc. wins Dream Project contest January 9th, 2018

Quantum Dots/Rods

Tweaking quantum dots powers-up double-pane solar windows: Engineered quantum dots could bring down the cost of solar electricity January 2nd, 2018

Quantum communications bend to our needs: By changing the wavelengths of entangled photons to those used in telecommunications, researchers see quantum technology take a major leap forward September 28th, 2017

Band Gaps, Made to Order: Engineers create atomically thin superlattice materials with precision September 26th, 2017

New approach on research and design for CQD catalysts in World Scientific NANO August 2nd, 2017

Solar/Photovoltaic

Tweaking quantum dots powers-up double-pane solar windows: Engineered quantum dots could bring down the cost of solar electricity January 2nd, 2018

Record high photoconductivity for new metal-organic framework material December 15th, 2017

Inorganic-organic halide perovskites for new photovoltaic technology November 6th, 2017

New nanomaterial can extract hydrogen fuel from seawater: Hybrid material converts more sunlight and can weather seawater's harsh conditions October 4th, 2017

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project