Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > Alivisatos appointed Samsung Distinguished Chair in Nanoscience

Paul Alivisatos, the newly named Samsung Distinguished Chair in Nanoscience and Nanotechnology, in conversation with Dr. Young Hwan Kim of the Samsung Advanced Institute of Technology, Korea, at Alivisatosís lab on the UC Berkeley campus. A delegation from SAIT visited UC Berkeley Thursday, Aug. 22.Photo by Roy Kaltschmidt, Berkeley Lab
Paul Alivisatos, the newly named Samsung Distinguished Chair in Nanoscience and Nanotechnology, in conversation with Dr. Young Hwan Kim of the Samsung Advanced Institute of Technology, Korea, at Alivisatosís lab on the UC Berkeley campus. A delegation from SAIT visited UC Berkeley Thursday, Aug. 22.

Photo by Roy Kaltschmidt, Berkeley Lab

Abstract:
Chemist Paul Alivisatos, one of the pioneers of nanoscience, has been appointed to the Samsung Distinguished Chair in Nanoscience and Nanotechnology at UC Berkeley in recognition of his many scientific achievements.

Alivisatos appointed Samsung Distinguished Chair in Nanoscience

Berkeley, CA | Posted on August 24th, 2013

The endowed chair, established through the support of Samsung Electronics Co., will help cement the campus's leadership in research and innovation in an area that has great implications for many fields ranging from biology to energy, the Office of the Vice-Chancellor for Research announced Friday (Aug. 23). Alivisatos, director of the Lawrence Berkeley National Laboratory and a UC Berkeley professor of chemistry, is known for his research into quantum dot semiconductor nanocrystals, clusters of hundreds to thousands of atoms with novel properties that can be applied to electronic devices and solar cells as well as light-emitting diodes (LEDs).

Dr. Youngjoon Gil, executive vice president of the Samsung Advanced Institute of Technology, welcomed the appointment.

"Historically, the invention of a new material can initiate a quantum leap in the development of industry," said Dr. Gil. "Nanomaterials offer such opportunities for the electronics as well as the biosciences industry, where precise control and manipulation of energy is required. Quantum dot, pioneered by Professor Alivisatos, has established its commercial value by reproducing more realistic colors on displays. Through the establishment of the endowed chair, Samsung anticipates a closer partnership with UC Berkeley, the world's leader in nanoscience, in exploring the commercial value of nanotechnology."

Over the past two decades, UC Berkeley has become a brain trust in nanoscience and nanotechnology, with nearly a hundred nanoscience and nanotech researchers in the fields of biology, chemistry, physics and materials science. These researchers have made major advances in understanding the nano-scale molecular motors that move materials around inside cells or manipulate DNA; creating tiny motors, lasers and photonic devices for smaller electronic circuits; creating flexible and inexpensive solar cells from nanorods; and understanding the properties of new materials such as graphene and high-temperature superconductors.

Graham Fleming, UC Berkeley's vice chancellor for research, lauded Samsung for its initiative in establishing this chair.

"The new chair helps build on our strengths in the conversation and utilization of energy on the nano scale," said Fleming. "It is a fitting recognition of Paul's achievements and his world-wide influence on the field of nanoscience. We look forward to continue expanding our relationship with Samsung in this area."

Alivisatos is widely recognized for his contributions to the study of nanocrystals, ranging from control of their synthesis and fabrication to studies of their optical, electrical, structural, and thermodynamic properties. He demonstrated that semiconductor nanocrystals can be grown into rods as opposed to spheres. This achievement paved the way for a slew of new synthetic advances, developing methods for controlling the shape, connectivity and topology of nanocrystals.

Nanocrystals are typically a few nanometers in diameter ó larger than molecules but smaller than bulk solids ó and frequently exhibit physical and chemical properties somewhere in between. Given that a nanocrystal is virtually all surface and no interior, its properties can vary considerably as the crystal grows.

Alivisatos's research has opened the door to a number of potential new applications for nanocrystals. These include their use as fluorescent probes for the study of biological materials and LEDs, and the fabrication of hybrid solar cells that combine nanotechnology with plastic electronics.

####

For more information, please click here

Contacts:
Andy Pino
Director of Communications and Media Relations
University of California, Berkeley
Office of Public Affairs
Direct: (510) 642-3591
Cell: (510) 704-3774

Copyright © UC Berkeley

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Construction of practical quantum computers radically simplified: Scientists invent ground-breaking new method that puts quantum computers within reach December 5th, 2016

Shape matters when light meets atom: Mapping the interaction of a single atom with a single photon may inform design of quantum devices December 4th, 2016

UTSA study describes new minimally invasive device to treat cancer and other illnesses: Medicine diffusion capsule could locally treat multiple ailments and diseases over several weeks December 3rd, 2016

Novel Electrode Structure Provides New Promise for Lithium-Sulfur Batteries December 3rd, 2016

Deep insights from surface reactions: Researchers use Stampede supercomputer to study new chemical sensing methods, desalination and bacterial energy production December 2nd, 2016

Chemistry

Deep insights from surface reactions: Researchers use Stampede supercomputer to study new chemical sensing methods, desalination and bacterial energy production December 2nd, 2016

Scientists shrink electron gun to matchbox size: Terahertz technology has the potential to enable new applications November 25th, 2016

Tip-assisted chemistry enables chemical reactions at femtoliter scale November 16th, 2016

Display technology/LEDs/SS Lighting/OLEDs

Trace metal recombination centers kill LED efficiency: UCSB researchers warn that trace amounts of transition metal impurities act as recombination centers in gallium nitride semiconductors November 3rd, 2016

Diamond nanothread: Versatile new material could prove priceless for manufacturing: Would you dress in diamond nanothreads? It's not as far-fetched as you might think November 3rd, 2016

Researchers surprised at the unexpected hardness of gallium nitride: A Lehigh University team discovers that the widely used semiconducting material is almost as wear-resistant as diamonds October 31st, 2016

Inspiration from the ocean: An interdisciplinary team of researchers at UC Santa Barbara has developed a non-toxic, high-quality surface treatment for organic field-effect transistors October 18th, 2016

Academic/Education

Oxford Nanoimaging report on how the Nanoimager, a desktop microscope delivering single molecule, super-resolution performance, is being applied at the MRC Centre for Molecular Bacteriology & Infection November 22nd, 2016

The University of Applied Sciences in Upper Austria uses Deben tensile stages as an integral part of their computed tomography research and testing facility October 18th, 2016

Enterprise In Space Partners with Sketchfab and 3D Hubs for NewSpace Education October 13th, 2016

New Agricultural Research Center Debuts at UCF October 12th, 2016

Announcements

Construction of practical quantum computers radically simplified: Scientists invent ground-breaking new method that puts quantum computers within reach December 5th, 2016

Shape matters when light meets atom: Mapping the interaction of a single atom with a single photon may inform design of quantum devices December 4th, 2016

UTSA study describes new minimally invasive device to treat cancer and other illnesses: Medicine diffusion capsule could locally treat multiple ailments and diseases over several weeks December 3rd, 2016

Novel Electrode Structure Provides New Promise for Lithium-Sulfur Batteries December 3rd, 2016

Appointments/Promotions/New hires/Resignations/Deaths

Dr Barbara Armbruster promoted to Worldwide Sales and Marketing Director for XEI Scientific September 27th, 2016

Dr Barbara Armbruster joins XEI Scientific as Marketing Director June 1st, 2016

Park Systems Global Expansion in AFM Market Includes Appointment of New Executives April 23rd, 2016

GLOBALFOUNDRIES Adds Alain Mutricy as Head of Product Management Group March 3rd, 2016

Energy

Research Study: MetaSOLTM Shatters Solar Panel Efficiency Forecasts with Innovative New Coating: Coating Provides 1.2 Percent Absolute Enhancement to Triple Junction Solar Cells December 2nd, 2016

Deep insights from surface reactions: Researchers use Stampede supercomputer to study new chemical sensing methods, desalination and bacterial energy production December 2nd, 2016

Throwing new light on printed organic solar cells December 1st, 2016

Physics, photosynthesis and solar cells: Researchers combine quantum physics and photosynthesis to make discovery that could lead to highly efficient, green solar cells November 30th, 2016

Grants/Awards/Scholarships/Gifts/Contests/Honors/Records

Shape matters when light meets atom: Mapping the interaction of a single atom with a single photon may inform design of quantum devices December 4th, 2016

Quantum obstacle course changes material from superconductor to insulator December 1st, 2016

'Back to the Future' inspires solar nanotech-powered clothing November 15th, 2016

2-D material a brittle surprise: Rice University researchers finds molybdenum diselenide not as strong as they thought November 14th, 2016

Quantum Dots/Rods

Trickling electrons: Close to absolute zero, the particles exhibit their quantum nature November 10th, 2016

Notre Dame researchers find transition point in semiconductor nanomaterials September 6th, 2016

Quantum dots with impermeable shell: A powerful tool for nanoengineering August 12th, 2016

Diamond-based light sources will lay a foundation for quantum communications of the future: Electrified quantum diamond can become the heart of quantum networks and computers of the future August 7th, 2016

Solar/Photovoltaic

Research Study: MetaSOLTM Shatters Solar Panel Efficiency Forecasts with Innovative New Coating: Coating Provides 1.2 Percent Absolute Enhancement to Triple Junction Solar Cells December 2nd, 2016

Throwing new light on printed organic solar cells December 1st, 2016

Physics, photosynthesis and solar cells: Researchers combine quantum physics and photosynthesis to make discovery that could lead to highly efficient, green solar cells November 30th, 2016

'Back to the Future' inspires solar nanotech-powered clothing November 15th, 2016

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project