Nanotechnology Now







Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > Physicists from Bielefeld University have developed a new method of fabrication

Using a new process the team working with Professor Dr. Armin Gölzhäuser has produced twelve different nanomembranes. The three images were made using the Bielefeld Helium Ion Microscope and show nanomembranes made from various starting materials. Photo: Bielefeld University.
Using a new process the team working with Professor Dr. Armin Gölzhäuser has produced twelve different nanomembranes. The three images were made using the Bielefeld Helium Ion Microscope and show nanomembranes made from various starting materials.

Photo: Bielefeld University.

Abstract:
In the future, carbon nanomembranes are expected to be able to filter out very fine materials. These separating layers are ultrathin, consisting of just one layer of molecules. In the long term, they could allow to separate gases from one another, for example, filtering toxins from the air. At present, the basic research is concerned with the production of nanomembranes. A research team working with Professor Dr. Armin Gölzhäuser of Bielefeld University has succeeded in developing a new path to produce such membranes. The advantage of this procedure is that it allows a variety of different carbon nanomembranes to be generated which are much thinner than conventional membranes. The upcoming issue of the renowned research journal ‘ACS Nano' reports on this research success.

Physicists from Bielefeld University have developed a new method of fabrication

Bielefeld, Germany | Posted on August 22nd, 2013

More than ten years ago, Professor Gölzhäuser and his then team created the groundwork for the current development, producing a carbon nanomembrane from biphenyl molecules. In the new study, the process was altered so as to allow the use of other starting materials. The prerequisite is that these molecules are also equipped with several so-called phenyl rings. For their new method, the researchers use the starting material in powder form. They dissolve the powder to pure alcohol and immerse very thin metal layer in this solution. After a short time the dissolved molecules settle themselves on the metal layer to form a monolayer of molecules. After being exposed to electron irradiation, the monolayer becomes a cross-linked nanomembrane. Subsequently the researchers ensure that the metal layer disintegrates, leav-ing only the nanomembrane remaining. ‘Up until now, we have produced small samples which are are a few centimetres square', says Gölzhäuser. ‘However, with this process it is possible to make nanomembranes that are as big as square metres.'

This new method is so special because the researchers can produce made-to-measure nanomembranes. ‘Every starting material has a different property, from thickness or trans-parency to elasticity. By using our process, these characteristics are transferred onto the nanomembrane.' In this way, carbon nanomembranes can be produced to address many dif-ferent needs. ‘That was not possible before now', says Gölzhäuser.

Furthermore, graphene can be made from nanomembranes. Researchers worldwide are ex-pecting graphene to have technically revolutionising properties, as it has an extremely high tensile strength and can conduct electricity and heat very well. The conversion from nanomembranes into graphene is simple for the Bielefeld researchers: The membranes have to be heated in a vacuum at a temperature of about 700 degrees Celsius. Gölzhäuser's team is working on the project with physicists from Ulm University, Frankfurt University and the Max Planck Institute for Polymer Research. The study has been funded by the Federal Ministry of Education and Research (BMBF) and the German Research Foundation (DFG).

####

For more information, please click here

Contacts:
Dr. Armin Gölzhäuser
Faculty of Physics

49-521-106-5362

Copyright © University of Bielefeld

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

Original publication:

For further information in the Internet, go to:

Related News Press

News and information

MIG Takes a Roll-Up-Your-Sleeves Approach with Revamped MEMS/Sensors Technical Event -- MIG welcomes technologists to MEMS Technical Congress, emphasizes working groups and breakout sessions on emerging MEMS & sensors, tech transfer and integration March 6th, 2015

Phenom-World announces the Phenom XL, world’s fastest desktop SEM to handle large samples March 6th, 2015

Air Bearing Stage / Systems Introduced by PI at Photonics West March 6th, 2015

Consistent Scalable Functionalised Graphene Capacity March 5th, 2015

American Chemical Society Presidential Symposia: nanoscience, international chemistry March 5th, 2015

Graphene

Consistent Scalable Functionalised Graphene Capacity March 5th, 2015

Enhanced Graphene Components for Next Generation Racing Yacht March 5th, 2015

Govt.-Legislation/Regulation/Funding/Policy

New research could lead to more efficient electrical energy storage March 4th, 2015

Energy-generating cloth could replace batteries in wearable devices March 4th, 2015

The taming of magnetic vortices: Unified theory for skyrmion-materials March 3rd, 2015

Black phosphorus is new 'wonder material' for improving optical communication March 3rd, 2015

Discoveries

Enhanced Graphene Components for Next Generation Racing Yacht March 5th, 2015

American Chemical Society Presidential Symposia: nanoscience, international chemistry March 5th, 2015

Strength in numbers: Researchers develop the first-ever quantum device that detects and corrects its own errors March 4th, 2015

New research could lead to more efficient electrical energy storage March 4th, 2015

Materials/Metamaterials

Consistent Scalable Functionalised Graphene Capacity March 5th, 2015

The taming of magnetic vortices: Unified theory for skyrmion-materials March 3rd, 2015

Breakthrough in OLED technology March 2nd, 2015

Moving molecule writes letters: Caging of molecules allows investigation of equilibrium thermodynamics February 27th, 2015

Announcements

MIG Takes a Roll-Up-Your-Sleeves Approach with Revamped MEMS/Sensors Technical Event -- MIG welcomes technologists to MEMS Technical Congress, emphasizes working groups and breakout sessions on emerging MEMS & sensors, tech transfer and integration March 6th, 2015

Phenom-World announces the Phenom XL, world’s fastest desktop SEM to handle large samples March 6th, 2015

Air Bearing Stage / Systems Introduced by PI at Photonics West March 6th, 2015

Get ready for NanoDays! March 5th, 2015

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers

Strength in numbers: Researchers develop the first-ever quantum device that detects and corrects its own errors March 4th, 2015

Energy-generating cloth could replace batteries in wearable devices March 4th, 2015

Experiment and theory unite at last in debate over microbial nanowires: New model and experiments settle debate over metallic-like conductivity of microbial nanowires in bacterium March 4th, 2015

Magnetic vortices in nanodisks reveal information: Researchers from Dresden and Jülich use microwaves to read out information from smallest storage devices March 4th, 2015

Research partnerships

French Institutes IRT Nanoelec and CMP Team up to Offer World’s First Service for Post-process 3D Technologies on Multi-Project-Wafer March 5th, 2015

New research could lead to more efficient electrical energy storage March 4th, 2015

Cambrios and Heraeus Jointly Create New, High-Conductivity Transparent Conductors: Two Companies' Combined Products Dramatically Extend Flexible Substrate Capabilities for Next-Generation Mass-Market Technology Products March 3rd, 2015

The taming of magnetic vortices: Unified theory for skyrmion-materials March 3rd, 2015

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More










ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2015 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE