Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > Physicists from Bielefeld University have developed a new method of fabrication

Using a new process the team working with Professor Dr. Armin Gölzhäuser has produced twelve different nanomembranes. The three images were made using the Bielefeld Helium Ion Microscope and show nanomembranes made from various starting materials. Photo: Bielefeld University.
Using a new process the team working with Professor Dr. Armin Gölzhäuser has produced twelve different nanomembranes. The three images were made using the Bielefeld Helium Ion Microscope and show nanomembranes made from various starting materials.

Photo: Bielefeld University.

Abstract:
In the future, carbon nanomembranes are expected to be able to filter out very fine materials. These separating layers are ultrathin, consisting of just one layer of molecules. In the long term, they could allow to separate gases from one another, for example, filtering toxins from the air. At present, the basic research is concerned with the production of nanomembranes. A research team working with Professor Dr. Armin Gölzhäuser of Bielefeld University has succeeded in developing a new path to produce such membranes. The advantage of this procedure is that it allows a variety of different carbon nanomembranes to be generated which are much thinner than conventional membranes. The upcoming issue of the renowned research journal ‘ACS Nano' reports on this research success.

Physicists from Bielefeld University have developed a new method of fabrication

Bielefeld, Germany | Posted on August 22nd, 2013

More than ten years ago, Professor Gölzhäuser and his then team created the groundwork for the current development, producing a carbon nanomembrane from biphenyl molecules. In the new study, the process was altered so as to allow the use of other starting materials. The prerequisite is that these molecules are also equipped with several so-called phenyl rings. For their new method, the researchers use the starting material in powder form. They dissolve the powder to pure alcohol and immerse very thin metal layer in this solution. After a short time the dissolved molecules settle themselves on the metal layer to form a monolayer of molecules. After being exposed to electron irradiation, the monolayer becomes a cross-linked nanomembrane. Subsequently the researchers ensure that the metal layer disintegrates, leav-ing only the nanomembrane remaining. ‘Up until now, we have produced small samples which are are a few centimetres square', says Gölzhäuser. ‘However, with this process it is possible to make nanomembranes that are as big as square metres.'

This new method is so special because the researchers can produce made-to-measure nanomembranes. ‘Every starting material has a different property, from thickness or trans-parency to elasticity. By using our process, these characteristics are transferred onto the nanomembrane.' In this way, carbon nanomembranes can be produced to address many dif-ferent needs. ‘That was not possible before now', says Gölzhäuser.

Furthermore, graphene can be made from nanomembranes. Researchers worldwide are ex-pecting graphene to have technically revolutionising properties, as it has an extremely high tensile strength and can conduct electricity and heat very well. The conversion from nanomembranes into graphene is simple for the Bielefeld researchers: The membranes have to be heated in a vacuum at a temperature of about 700 degrees Celsius. Gölzhäuser's team is working on the project with physicists from Ulm University, Frankfurt University and the Max Planck Institute for Polymer Research. The study has been funded by the Federal Ministry of Education and Research (BMBF) and the German Research Foundation (DFG).

####

For more information, please click here

Contacts:
Dr. Armin Gölzhäuser
Faculty of Physics

49-521-106-5362

Copyright © University of Bielefeld

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

Original publication:

For further information in the Internet, go to:

Related News Press

News and information

A toolkit for transformable materials: How to design materials with reprogrammable shape and function January 20th, 2017

Explaining how 2-D materials break at the atomic level January 20th, 2017

New research helps to meet the challenges of nanotechnology: Research helps to make the most of nanoscale catalytic effects for nanotechnology January 20th, 2017

Ultra-precise chip-scale sensor detects unprecedentedly small changes at the nanoscale January 20th, 2017

Graphene/ Graphite

Researchers design one of the strongest, lightest materials known: Porous, 3-D forms of graphene developed at MIT can be 10 times as strong as steel but much lighter January 7th, 2017

Nano-chimneys can cool circuits: Rice University scientists calculate tweaks to graphene would form phonon-friendly cones January 4th, 2017

First use of graphene to detect cancer cells: System able to detect activity level of single interfaced cell December 20th, 2016

New graphene-based system could help us see electrical signaling in heart and nerve cells: Berkeley-Stanford team creates a system to visualize faint electric fields December 19th, 2016

Govt.-Legislation/Regulation/Funding/Policy

A toolkit for transformable materials: How to design materials with reprogrammable shape and function January 20th, 2017

'5-D protein fingerprinting' could give insights into Alzheimer's, Parkinson's January 19th, 2017

Strength of hair inspires new materials for body armor January 18th, 2017

Self-assembling particles brighten future of LED lighting January 18th, 2017

Discoveries

A toolkit for transformable materials: How to design materials with reprogrammable shape and function January 20th, 2017

Explaining how 2-D materials break at the atomic level January 20th, 2017

New research helps to meet the challenges of nanotechnology: Research helps to make the most of nanoscale catalytic effects for nanotechnology January 20th, 2017

Ultra-precise chip-scale sensor detects unprecedentedly small changes at the nanoscale January 20th, 2017

Materials/Metamaterials

A toolkit for transformable materials: How to design materials with reprogrammable shape and function January 20th, 2017

Explaining how 2-D materials break at the atomic level January 20th, 2017

Chemists Cook up New Nanomaterial and Imaging Method: Nanomaterials can store all kinds of things, including energy, drugs and other cargo January 19th, 2017

Strength of hair inspires new materials for body armor January 18th, 2017

Announcements

A toolkit for transformable materials: How to design materials with reprogrammable shape and function January 20th, 2017

New research helps to meet the challenges of nanotechnology: Research helps to make the most of nanoscale catalytic effects for nanotechnology January 20th, 2017

Ultra-precise chip-scale sensor detects unprecedentedly small changes at the nanoscale January 20th, 2017

Chemists Cook up New Nanomaterial and Imaging Method: Nanomaterials can store all kinds of things, including energy, drugs and other cargo January 19th, 2017

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers

A toolkit for transformable materials: How to design materials with reprogrammable shape and function January 20th, 2017

Explaining how 2-D materials break at the atomic level January 20th, 2017

New research helps to meet the challenges of nanotechnology: Research helps to make the most of nanoscale catalytic effects for nanotechnology January 20th, 2017

Ultra-precise chip-scale sensor detects unprecedentedly small changes at the nanoscale January 20th, 2017

Research partnerships

Chemists Cook up New Nanomaterial and Imaging Method: Nanomaterials can store all kinds of things, including energy, drugs and other cargo January 19th, 2017

Chemistry on the edge: Experiments at Berkeley Lab confirm that structural defects at the periphery are key in catalyst function January 13th, 2017

Recreating conditions inside stars with compact lasers: Scientists offer a new path to creating the extreme conditions found in stars, using ultra-short laser pulses irradiating nanowires January 12th, 2017

Zeroing in on the true nature of fluids within nanocapillaries: While exploring the behavior of fluids at the nanoscale, a group of researchers at the French National Center for Scientific Research discovered a peculiar state of fluid mixtures contained in microscopic channels January 11th, 2017

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project