Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > Scientists Replace Nanoparticles with Nanostructures to Produce Solar Cells with Higher Efficiency

Abstract:
Zinc oxide nanostructures were used instead of zinc oxide nanoparticles in the production of dye-sensitized solar cells by researchers from Tehran University.

Scientists Replace Nanoparticles with Nanostructures to Produce Solar Cells with Higher Efficiency

Terhan, Iran | Posted on August 18th, 2013

Due to their high mobility, the nanostructures increase the efficiency of dye-sensitized solar cells based on these nanostructures.

This research deals with the production, designing, and characterization of solar cells based on dye-sensitized zinc oxide nanoparticles. The solar cells consist of an anode and a cathode. This research studies the anode structure, and determines the optimum conditions. The nanostructures can be considered appropriate replacement for the nanoparticles.

Fatemeh Dehqan Nayyeri, a PhD student in electrical engineering and nanoelectronics in University of Tehran, explained how nanowires were grown in this research. "Zinc oxide nanowires were grown through chemical bath deposition method, which is a simple, cost-effective, and repeatable process, and it can be carried out at large scale. We know that the properties and the thickness of the seed layers affect the growth of zinc oxide nanowires. ZnO seed layers with weak crystalline properties produce vertical nanowires with less leveling."

The use of zinc oxide nanostructures instead of zinc oxide nanoparticles in the production of dye-sensitized solar cells increases the efficiency of the solar cells based on these nanostructures due to higher mobility. Two different seed layers of ZnO and AZO were used in order to produce the solar cell.

Results of the research will be published in December 2013 in Renewable Energy, vol. 60. For more information about the details of the research, study the full article on pages 246-255 on the same journal.

####

For more information, please click here

Copyright © Fars News Agency

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Particles from outer space are wreaking low-grade havoc on personal electronics February 19th, 2017

Liquid metal nano printing set to revolutionize electronics: Creating integrated circuits just atoms thick February 18th, 2017

Engineers shrink microscope to dime-sized device February 17th, 2017

Francis Alexander Named Deputy Director of Brookhaven Lab's Computational Science Initiative February 16th, 2017

Discoveries

Particles from outer space are wreaking low-grade havoc on personal electronics February 19th, 2017

Liquid metal nano printing set to revolutionize electronics: Creating integrated circuits just atoms thick February 18th, 2017

Engineers shrink microscope to dime-sized device February 17th, 2017

Research opens door to smaller, cheaper, more agile communications tech February 16th, 2017

Announcements

Particles from outer space are wreaking low-grade havoc on personal electronics February 19th, 2017

Liquid metal nano printing set to revolutionize electronics: Creating integrated circuits just atoms thick February 18th, 2017

Engineers shrink microscope to dime-sized device February 17th, 2017

Francis Alexander Named Deputy Director of Brookhaven Lab's Computational Science Initiative February 16th, 2017

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers

Particles from outer space are wreaking low-grade havoc on personal electronics February 19th, 2017

Liquid metal nano printing set to revolutionize electronics: Creating integrated circuits just atoms thick February 18th, 2017

Engineers shrink microscope to dime-sized device February 17th, 2017

Research opens door to smaller, cheaper, more agile communications tech February 16th, 2017

Energy

In-cell molecular sieve from protein crystal February 14th, 2017

NREL research pinpoints promise of polycrystalline perovskites February 8th, 2017

Metallic hydrogen, once theory, becomes reality: Harvard physicists succeed in creating 'the holy grail of high-pressure physics' January 28th, 2017

New low-cost technique converts bulk alloys to oxide nanowires January 24th, 2017

Solar/Photovoltaic

Material can turn sunlight, heat and movement into electricity -- all at once: Extracting energy from multiple sources could help power wearable technology February 9th, 2017

NREL research pinpoints promise of polycrystalline perovskites February 8th, 2017

A big nano boost for solar cells: Kyoto University and Osaka Gas effort doubles current efficiencies January 21st, 2017

Chemists Cook up New Nanomaterial and Imaging Method: Nanomaterials can store all kinds of things, including energy, drugs and other cargo January 19th, 2017

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project