Nanotechnology Now

Our NanoNews Digest Sponsors



Heifer International

Wikipedia Affiliate Button


android tablet pc

Home > Press > Nanosensors could aid drug manufacturing: Chemical engineers find that arrays of carbon nanotubes can detect flaws in drugs and help improve production

 Chemical engineering graduate student Nigel Reuel has spent much of this year adapting his nanosensors to mobile measurement, building this briefcase-sized detector system that can measure real-time binding kinetics of 20 to 50 different biological samples. The device will be tested at Novartis later this year.
Photo courtesy of the researchers
Chemical engineering graduate student Nigel Reuel has spent much of this year adapting his nanosensors to mobile measurement, building this briefcase-sized detector system that can measure real-time binding kinetics of 20 to 50 different biological samples. The device will be tested at Novartis later this year.

Photo courtesy of the researchers

Abstract:
MIT chemical engineers have discovered that arrays of billions of nanoscale sensors have unique properties that could help pharmaceutical companies produce drugs especially those based on antibodies more safely and efficiently.

Nanosensors could aid drug manufacturing: Chemical engineers find that arrays of carbon nanotubes can detect flaws in drugs and help improve production

Cambridge, MA | Posted on August 17th, 2013

Using these sensors, the researchers were able to characterize variations in the binding strength of antibody drugs, which hold promise for treating cancer and other diseases. They also used the sensors to monitor the structure of antibody molecules, including whether they contain a chain of sugars that interferes with proper function.

"This could help pharmaceutical companies figure out why certain drug formulations work better than others, and may help improve their effectiveness," says Michael Strano, an MIT professor of chemical engineering and senior author of a recent paper describing the sensors in the journal ACS Nano.

The team also demonstrated how nanosensor arrays could be used to determine which cells in a population of genetically engineered, drug-producing cells are the most productive or desirable, Strano says.

Lead author of the paper is Nigel Reuel, a graduate student in Strano's lab. The labs of MIT faculty members Krystyn Van Vliet, Christopher Love and Dane Wittrup also contributed, along with scientists from Novartis.

Testing drug strength

Strano and other scientists have previously shown that tiny, nanometer-sized sensors, such as carbon nanotubes, offer a powerful way to detect minute quantities of a substance. Carbon nanotubes are 50,000 times thinner than a human hair, and they can bind to proteins that recognize a specific target molecule. When the target is present, it alters the fluorescent signal produced by the nanotube in a way that scientists can detect.

Some researchers are trying to exploit large arrays of nanosensors, such as carbon nanotubes or semiconducting nanowires, each customized for a different target molecule, to detect many different targets at once. In the new study, Strano and his colleagues wanted to explore unique properties that emerge from large arrays of sensors that all detect the same thing.

The first feature they discovered, through mathematical modeling and experimentation, is that uniform arrays can measure the distribution in binding strength of complex proteins such as antibodies. Antibodies are naturally occurring molecules that play a key role in the body's ability to recognize and defend against foreign invaders. In recent years, scientists have been developing antibodies to treat disease, particularly cancer. When those antibodies bind to proteins found on cancer cells, they stimulate the body's own immune system to attack the tumor.

For antibody drugs to be effective, they must strongly bind their target. However, the manufacturing process, which relies on nonhuman, engineered cells, does not always generate consistent, uniformly binding batches of antibodies.

Currently, drug companies use time-consuming and expensive analytical processes to test each batch and make sure it meets the regulatory standards for effectiveness. However, the new MIT sensor could make this process much faster, allowing researchers to not only better monitor and control production, but also to fine-tune the manufacturing process to generate a more consistent product.

"You could use the technology to reject batches, but ideally you'd want to use it in your upstream process development to better define culture conditions, so then you wouldn't produce spurious lots," Reuel says.

Measuring weak interactions

Another useful trait of such sensors is their ability to measure very weak binding interactions, which could also help with antibody drug manufacturing.

Antibodies are usually coated with long sugar chains through a process called glycosylation. These sugar chains are necessary for the drugs to be effective, but they are extremely hard to detect because they interact so weakly with other molecules. Drug-manufacturing organisms that synthesize antibodies are also programmed to add sugar chains, but the process is difficult to control and is strongly influenced by the cells' environmental conditions, including temperature and acidity.

Without the appropriate glycosylation, antibodies delivered to a patient may elicit an unwanted immune response or be destroyed by the body's cells, making them useless.

"This has been a problem for pharmaceutical companies and researchers alike, trying to measure glycosylated proteins by recognizing the carbohydrate chain," Strano says. "What a nanosensor array can do is greatly expand the number of opportunities to detect rare binding events. You can measure what you would otherwise not be able to quantify with a single, larger sensor with the same sensitivity."

This tool could help researchers determine the optimal conditions for the correct degree of glycosylation to occur, making it easier to consistently produce effective drugs.

Mapping production

The third property the researchers discovered is the ability to map the production of a molecule of interest. "One of the things you would like to do is find strains of particular organisms that produce the therapeutic that you want," Strano says. "There are lots of ways of doing this, but none of them are easy."

The MIT team found that by growing the cells on a surface coated with an array of nanometer-sized sensors, they could detect the location of the most productive cells. In this study, they looked for an antibody produced by engineered human embryonic kidney cells, but the system could also be tailored to other proteins and organisms.

Once the most productive cells are identified, scientists look for genes that distinguish those cells from the less productive ones and engineer a new strain that is highly productive, Strano says.

The researchers have built a briefcase-sized prototype of their sensor that they plan to test with Novartis, which funded the research along with the National Science Foundation.

"Carbon nanotubes coupled to protein-binding entities are interesting for several areas of bio-manufacturing as they offer great potential for online monitoring of product levels and quality. Our collaboration has shown that carbon nanotube-based fluorescent sensors are applicable for such purposes, and I am eager to follow the maturation of this technology," says Ramon Wahl, an author of the paper and a principal scientist at Novartis.

Written by: Anne Trafton, MIT News Office

####

For more information, please click here

Contacts:
Sarah McDonnell

617-253-8923

Copyright © MIT

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Scientists reveal breakthrough in optical fiber communications December 21st, 2014

Atom-thick CCD could capture images: Rice University scientists develop two-dimensional, light-sensitive material December 20th, 2014

Oregon researchers glimpse pathway of sunlight to electricity: Collaboration with Lund University uses modified UO spectroscopy equipment to study 'maze' of connections in photoactive quantum dots December 19th, 2014

Instant-start computers possible with new breakthrough December 19th, 2014

Nanotubes/Buckyballs

A sponge-like molecular cage for purification of fullerenes December 15th, 2014

'Trojan horse' proteins used to target hard-to-reach cancers: Scientists at Brunel University London have found a way of targeting hard-to-reach cancers and degenerative diseases using nanoparticles, but without causing the damaging side effects the treatment normally brings December 11th, 2014

Detecting gases wirelessly and cheaply: New sensor can transmit information on hazardous chemicals or food spoilage to a smartphone December 8th, 2014

Green meets nano: Scientists at TU Darmstadt create multifunctional nanotubes using nontoxic materials December 3rd, 2014

Nanomedicine

Creation of 'Rocker' protein opens way for new smart molecules in medicine, other fields December 18th, 2014

Iranian Researchers Produce Electrical Pieces Usable in Human Body December 18th, 2014

Unraveling the light of fireflies December 17th, 2014

First Home-Made Edible Herbal Nanodrug Presented to Pharmacies across Iran December 17th, 2014

Sensors

Promising new method for rapidly screening cancer drugs: UMass Amherst researchers invent fast, accurate new nanoparticle-based sensor system December 15th, 2014

Graphene Applied in Production of Recyclable Electrodes December 13th, 2014

Detecting gases wirelessly and cheaply: New sensor can transmit information on hazardous chemicals or food spoilage to a smartphone December 8th, 2014

Nanosensor to Detect Naproxen Drug Produced in Iran December 6th, 2014

Discoveries

Scientists reveal breakthrough in optical fiber communications December 21st, 2014

Atom-thick CCD could capture images: Rice University scientists develop two-dimensional, light-sensitive material December 20th, 2014

Oregon researchers glimpse pathway of sunlight to electricity: Collaboration with Lund University uses modified UO spectroscopy equipment to study 'maze' of connections in photoactive quantum dots December 19th, 2014

Instant-start computers possible with new breakthrough December 19th, 2014

Announcements

Scientists reveal breakthrough in optical fiber communications December 21st, 2014

Atom-thick CCD could capture images: Rice University scientists develop two-dimensional, light-sensitive material December 20th, 2014

Oregon researchers glimpse pathway of sunlight to electricity: Collaboration with Lund University uses modified UO spectroscopy equipment to study 'maze' of connections in photoactive quantum dots December 19th, 2014

Instant-start computers possible with new breakthrough December 19th, 2014

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers

Scientists reveal breakthrough in optical fiber communications December 21st, 2014

Atom-thick CCD could capture images: Rice University scientists develop two-dimensional, light-sensitive material December 20th, 2014

Oregon researchers glimpse pathway of sunlight to electricity: Collaboration with Lund University uses modified UO spectroscopy equipment to study 'maze' of connections in photoactive quantum dots December 19th, 2014

Instant-start computers possible with new breakthrough December 19th, 2014

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More










ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2014 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE