Nanotechnology Now

Our NanoNews Digest Sponsors





Heifer International

Wikipedia Affiliate Button


android tablet pc

Home > Press > Graphene nanoscrolls are formed by decoration of magnetic nanoparticles

Abstract:
Researchers at Umeå University, together with researchers at Uppsala University and Stockholm University, show in a new study how nitrogen doped graphene can be rolled into perfect Archimedean nano scrolls by adhering magnetic iron oxide nanoparticles on the surface of the graphene sheets. The new material may have very good properties for application as electrodes in for example Li-ion batteries.

Graphene nanoscrolls are formed by decoration of magnetic nanoparticles

Umeå, Sweden | Posted on August 15th, 2013

Graphene is one of the most interesting materials for future applications in everything from high performance electronics, optical components to flexible and strong materials. Ordinary graphene consists of carbon sheets that are single or few atomic layers thick.

In the study the researchers have modified the graphene by replacing some of the carbon atoms by nitrogen atoms. By this method they obtain anchoring sites for the iron oxide nanoparticles that are decorated onto the graphene sheets in a solution process. In the decoration process one can control the type of iron oxide nanoparticles that are formed on the graphene surface, so that they either form so called hematite (the reddish form of iron oxide that often is found in nature) or maghemite, a less stable and more magnetic form of iron oxide.

"Interestingly we observed that when the graphene is decorated by maghemite, the graphene sheets spontaneously start to roll into perfect Archimedean nano scrolls, while when decorated by the less magnetic hematite nanoparticles the graphene remain as open sheets, says Thomas Wågberg, Senior lecturer at the Department of Physics at Umeå University.

The nanoscrolls can be visualized as traditional "Swiss rolls" where the sponge-cake represents the graphene, and the creamy filling is the iron oxide nanoparticles. The graphene nanoscrolls are however around one million times thinner.

The results that now have been published in Nature Communications are conceptually interesting for several reasons. It shows that the magnetic interaction between the iron oxide nanoparticles is one of the main effects behind the scroll formation. It also shows that the nitrogen defects in the graphene lattice are necessary for both stabilizing a sufficiently high number of maghemite nanoparticles, and also responsible for "buckling" the graphene sheets and thereby lowering the formation energy of the nanoscrolls.

The process is extraordinary efficient. Almost 100 percent of the graphene sheets are scrolled. After the decoration with maghemite particles the research team could not find any open graphene sheets.

Moreover, they showed that by removing the iron oxide nanoparticles by acid treatment the nanoscrolls again open up and go back to single graphene sheets.

"Besides adding valuable fundamental understanding in the physics and chemistry of graphene, nitrogen-doping and nanoparticles we have reasons to believe that the iron oxide decorated nitrogen doped graphene nanoscrolls have very good properties for application as electrodes in for example Li-ion batteries, one of the most important batteries in daily life electronics, " says Thomas Wågberg.

The study has been conducted within the "The artificial leaf" project which is funded by Knut and Alice Wallenberg foundation to physicist, chemists, and plant science researchers at Umeå University.

####

For more information, please click here

Contacts:
Thomas Wågberg
Department of Physics
Umeå University
Telephone: +46(0)90-786 59 93

Copyright © Umeå University

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

Original publication:

Related News Press

News and information

Industrial Nanotech, Inc. to Publish PCAOB Audited Financials July 31st, 2014

Nanostructured metal-oxide catalyst efficiently converts CO2 to methanol: Highly reactive sites at interface of 2 nanoscale components could help overcome hurdle of using CO2 as a starting point in producing useful products July 31st, 2014

Carnegie Mellon Chemists Create Nanofibers Using Unprecedented New Method July 31st, 2014

Pressure probing potential photoelectronic manufacturing compound July 31st, 2014

NanoScience: Giants of the Infinitesimal July 31st, 2014

Graphene

Pressure probing potential photoelectronic manufacturing compound July 31st, 2014

FLAG-ERA and TNT2014 join efforts: Graphene Networking at its higher level in Barcelona: Encourage the participation in a joint transnational call July 30th, 2014

Tough foam from tiny sheets: Rice University lab uses atom-thick materials to make ultralight foam July 29th, 2014

Discoveries

Study finds physical link to strange electronic behavior: Neutron measurements offer new clues about iron-based superconductor July 31st, 2014

Nanostructured metal-oxide catalyst efficiently converts CO2 to methanol: Highly reactive sites at interface of 2 nanoscale components could help overcome hurdle of using CO2 as a starting point in producing useful products July 31st, 2014

Carnegie Mellon Chemists Create Nanofibers Using Unprecedented New Method July 31st, 2014

Pressure probing potential photoelectronic manufacturing compound July 31st, 2014

Announcements

Industrial Nanotech, Inc. to Publish PCAOB Audited Financials July 31st, 2014

Nanostructured metal-oxide catalyst efficiently converts CO2 to methanol: Highly reactive sites at interface of 2 nanoscale components could help overcome hurdle of using CO2 as a starting point in producing useful products July 31st, 2014

Carnegie Mellon Chemists Create Nanofibers Using Unprecedented New Method July 31st, 2014

Pressure probing potential photoelectronic manufacturing compound July 31st, 2014

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals

Carnegie Mellon Chemists Create Nanofibers Using Unprecedented New Method July 31st, 2014

Pressure probing potential photoelectronic manufacturing compound July 31st, 2014

NanoScience: Giants of the Infinitesimal July 31st, 2014

From Narrow to Broad July 30th, 2014

Battery Technology/Capacitors/Generators/Piezoelectrics/Thermoelectrics

Tough foam from tiny sheets: Rice University lab uses atom-thick materials to make ultralight foam July 29th, 2014

Stanford team achieves 'holy grail' of battery design: A stable lithium anode - Engineers use carbon nanospheres to protect lithium from the reactive and expansive problems that have restricted its use as an anode July 27th, 2014

Nano-supercapacitors for electric cars July 25th, 2014

Compact Vibration Harvester Power Supply with Highest Efficiency Opens Door to “Fix-and-Forget” Sensor Nodes July 23rd, 2014

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More














ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2014 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE