Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > Rice technique expands options for molecular imaging: One-of-a-kind spectrometer reads vibrations between atoms to find structures of molecules

A technique by Rice University chemist Junrong Zheng measures vibrations between atoms to determine the three-dimensional form of molecules.Credit: Zheng Lab/Rice University
A technique by Rice University chemist Junrong Zheng measures vibrations between atoms to determine the three-dimensional form of molecules.

Credit: Zheng Lab/Rice University

Abstract:
-- A Rice University laboratory has improved upon its ability to determine molecular structures in three dimensions in ways that challenge long-used standards.

Rice technique expands options for molecular imaging: One-of-a-kind spectrometer reads vibrations between atoms to find structures of molecules

Houston, TX | Posted on August 15th, 2013

By measuring the vibrations between atoms using femtosecond-long laser pulses, the Rice lab of chemist Junrong Zheng is able to discern the positions of atoms within molecules without the restrictions imposed by X-ray diffraction (XRD) and nuclear magnetic resonance (NMR) imaging.

The technique can capture the structure of molecules at room temperature or very low or high temperatures and in many kinds of samples, including crystals, powders, gels, liquids and gases. It will be useful to scientists who study catalysis, energy storage, organic solar cells and biomembranes, among many other possibilities, Zheng said.

The researchers reported their results online this week in the American Chemical Society's Journal of Physical Chemistry.

Zheng and his co-authors at Rice and Oak Ridge National Laboratory analyzed variations of a model molecule, 4'-methyl-2'nitroacetanilide (MNA), and compared the results with computer-generated and XRD models. The images matched nicely, he said.

Traditional spectrometers read the wavelengths of light scattered by samples to identify materials and study their properties. But the one-of-a-kind spectrometer developed by Zheng uses very short laser pulses to read the vibrational energies inherent to every atom. Those energies determine how atoms bond to form a molecule, and a measurement of the length and angles of those bonds can be extracted from the vibrations themselves, he said.

The infrared and terahertz lasers used for the experiment captured information about a molecular angle in a mere 100 femtoseconds. (One femtosecond is a millionth of a billionth of a second.)

"The important part of this paper is to demonstrate that our method can determine three-dimensional molecular structures no matter whether they're in liquids or solids," Zheng said.

"Typically, when organic chemists synthesize a molecule, they know its makeup but have no idea what the structure is," he said. "Their first option is to make a single crystal of the molecule and use XRD to determine the precise structure. But in many cases it's very tedious, if not impossible, to grow a single crystal.

"People also use NMR to learn the structure," he said. "But the trouble with many molecules is the solubility is really bad. Insoluble molecules can't be read well by either method."

The Rice technique, dubbed "multiple-dimensional vibrational spectroscopy," is able to capture the conformation of small molecules -- for starters -- with great accuracy, Zheng said. The spectrometer reads only intramolecular interactions among vibrations and ignores interactions between molecules, he said.

"The atoms in every molecule are always vibrating, and each bond between atoms vibrates at a certain frequency, and in a certain direction," he said. "We found that if we can measure the direction of one vibration and then another, then we can know the angle between these two vibrations - and therefore the angle between the bonds."

He said the researchers begin with the chemical formula and already know, through Fourier transform infrared spectroscopy, how many vibrational frequencies are contained in a given molecule. "Then we measure each vibrational mode, one by one. Once we get all the cross-angles, we can translate this to a model," he said.

For now, as a proof of concept, Zheng and his team analyze molecules for which the structure is already known. Over time, the technique should be able to analyze much larger molecules, like viruses that contain thousands or tens of thousands of atoms, he said.

"This is just the first demonstration that this method works," he said. "These are simple molecules, 23 or 24 atoms. I think it will take some time to get to proteins. My expectation is that it will take 10 to 20 years to develop. Remember, for NMR, it took 50 years to be able to read the structure of proteins."

Hailong Chen, a Welch postdoctoral research fellow at Rice, is lead author of the paper; Co-authors are Rice graduate students Yufan Zhang and Jiebo Li and Oak Ridge researchers Hongjun Liu and De-en Jiang. Zheng is an assistant professor of chemistry.

The Air Force Office of Scientific Research, the Welch Foundation, the Packard Foundation and the Department of Energy supported the research.

####

About Rice University
Located on a 300-acre forested campus in Houston, Rice University is consistently ranked among the nation's top 20 universities by U.S. News & World Report. Rice has highly respected schools of Architecture, Business, Continuing Studies, Engineering, Humanities, Music, Natural Sciences and Social Sciences and is home to the Baker Institute for Public Policy. With 3,708 undergraduates and 2,374 graduate students, Rice's undergraduate student-to-faculty ratio is 6-to-1. Its residential college system builds close-knit communities and lifelong friendships, just one reason why Rice has been ranked No. 1 for best quality of life multiple times by the Princeton Review and No. 2 for "best value" among private universities by Kiplinger's Personal Finance. To read "What they're saying about Rice," go to tinyurl.com/AboutRiceU.

Follow Rice News and Media Relations via Twitter @RiceUNews.

For more information, please click here

Contacts:
David Ruth
713-348-6327


Jade Boyd
713-348-6778

Copyright © Rice University

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

Read the abstract at:

Zheng Lab:

Related News Press

News and information

A nanoscale wireless communication system via plasmonic antennas: Greater control affords 'in-plane' transmission of waves at or near visible light August 27th, 2016

Forces of nature: Interview with microscopy innovators Gerd Binnig and Christoph Gerber August 26th, 2016

A promising route to the scalable production of highly crystalline graphene films August 26th, 2016

Graphene under pressure August 26th, 2016

Imaging

Forces of nature: Interview with microscopy innovators Gerd Binnig and Christoph Gerber August 26th, 2016

New approach to determining how atoms are arranged in materials August 25th, 2016

Govt.-Legislation/Regulation/Funding/Policy

Analog DNA circuit does math in a test tube: DNA computers could one day be programmed to diagnose and treat disease August 25th, 2016

New approach to determining how atoms are arranged in materials August 25th, 2016

Johns Hopkins scientists track metabolic pathways to find drug combination for pancreatic cancer August 25th, 2016

New electrical energy storage material shows its power: Nanomaterial combines attributes of both batteries and supercapacitors August 25th, 2016

Discoveries

A promising route to the scalable production of highly crystalline graphene films August 26th, 2016

Graphene under pressure August 26th, 2016

Nanofur for oil spill cleanup: Materials researchers learn from aquatic ferns: Hairy plant leaves are highly oil-absorbing / publication in bioinspiration & biomimetics / video on absorption capacity August 25th, 2016

Unraveling the crystal structure of a -70 Celsius superconductor, a world first: Significant advancement in the realization of room-temperature superconductors August 25th, 2016

Announcements

A nanoscale wireless communication system via plasmonic antennas: Greater control affords 'in-plane' transmission of waves at or near visible light August 27th, 2016

Forces of nature: Interview with microscopy innovators Gerd Binnig and Christoph Gerber August 26th, 2016

A promising route to the scalable production of highly crystalline graphene films August 26th, 2016

Graphene under pressure August 26th, 2016

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers

A nanoscale wireless communication system via plasmonic antennas: Greater control affords 'in-plane' transmission of waves at or near visible light August 27th, 2016

Forces of nature: Interview with microscopy innovators Gerd Binnig and Christoph Gerber August 26th, 2016

A promising route to the scalable production of highly crystalline graphene films August 26th, 2016

New electrical energy storage material shows its power: Nanomaterial combines attributes of both batteries and supercapacitors August 25th, 2016

Tools

Nanofiber scaffolds demonstrate new features in the behavior of stem and cancer cells August 25th, 2016

50 years after the release of the film 'Fantastic Voyage,' science upstages fiction: Science upstages fiction with nanorobotic agents designed to travel in the human body to treat cancer August 25th, 2016

University of Puerto Rico and NASA back in the news XEI reports August 23rd, 2016

Spider silk: Mother Nature's bio-superlens August 22nd, 2016

Military

New electrical energy storage material shows its power: Nanomaterial combines attributes of both batteries and supercapacitors August 25th, 2016

Nanoparticles that speed blood clotting may someday save lives August 23rd, 2016

Curbing the life-long effects of traumatic brain injury August 19th, 2016

Lab team spins ginger into nanoparticles to heal inflammatory bowel disease August 19th, 2016

Photonics/Optics/Lasers

Silicon nanoparticles trained to juggle light: Research findings prove the capabilities of silicon nanoparticles for flexible data processing in optical communication systems August 25th, 2016

AIM Photonics Announces Release of Process Design Kit (PDK) for Integrated Silicon Photonics Design August 25th, 2016

New theory could lead to new generation of energy friendly optoelectronics: Researchers at Queen's University Belfast and ETH Zurich, Switzerland, have created a new theoretical framework which could help physicists and device engineers design better optoelectronics August 23rd, 2016

Hexagonal boron nitride semiconductors enable cost-effective detection of neutron signals: Texas Tech University researchers demonstrate hexagonal boron nitride semiconductors as a cost-effective alternative for inspecting overseas cargo containers entering US ports August 17th, 2016

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







Car Brands
Buy website traffic