Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Nanobotmodels offer concept animation of nanorobotic atherosclerosis plaque removement

Abstract:
Atherosclerosis is a major cardiovascular disease involving accumulations of lipids, white blood cells, and other materials on the inside of artery walls. Since the calcification found in the advanced stage of atherosclerosis dramatically enhances the mechanical properties of the plaque, restoring the original lumen of the artery remains a challenge.

Nanobotmodels offer concept animation of nanorobotic atherosclerosis plaque removement

Melitopol, Ukraine | Posted on August 14th, 2013

Calcification [1] forms among vascular smooth muscle cells of the surrounding muscular layer, specifically in the muscle cells adjacent to atheromas and on the surface of atheroma plaques and tissue. In time, as cells die, this leads to extracellular calcium deposits between the muscular wall and outer portion of the atheromatous plaques.

Complications of advanced atherosclerosis are chronic, slowly progressive and cumulative. Most commonly, soft plaque suddenly ruptures, causing the formation of a thrombus that will rapidly slow or stop blood flow, leading to death of the tissues fed by the artery in approximately 5 minutes. This catastrophic event is called an infarction. One of the most common recognized scenarios is called coronary thrombosis of a coronary artery, causing a heart attack. The same process in an artery to the brain is commonly called stroke. Another common scenario in very advanced disease is claudication from insufficient blood supply to the legs, typically caused by a combination of both stenosis and aneurysmal segments narrowed with clots.

Modern medicine use high-speed rotational atherectomy, when performed with an ablating grinder to remove the plaque, produces much better results in the treatment of calcified plaque compared to other methods [2].

However, the high-speed rotation of the Rotablator commercial rotational atherectomy device produces microcavitation, which should be avoided because of the serious complications it can cause. This research involves the development of a high-speed rotational ablation tool that does not generate microcavitation [2].

Future nanomedical devices can avoid this problem and also they can make atherectomy non-invasive and simply procedure.

Nanobotmodels created first artistic representations of a conceptual advanced atherosclerosis plaques removing using medical nanorobotics.

Medical nanorobots called "nano" due to size of their components. These tiny artificial nanoelectromechanical systems will change 90% of traditional medicine treatments, make them fast and more efficient.

Perhaps the best-characterized mechanical nanocomputer is Drexler's rod logic design. In this design, one sliding rod with a knob intersects a second knobbed sliding rod at right angles to the first. Depending upon the position of the first rod, the second may be free to move, or unable to move. This simple blocking interaction serves as the basis for logical operations [3]. The same CPU logic can be used in anti-atherosclerosis nanorobot.

The nanorobot has magnetic marcers - "cores" that can monitor its position inside the blood system with high precision. That is why physicians can operate the nanorobot in real-time inside the bloodstream and physicians can control all the nanorobot's main functions by a remote monitor (like MRI imaging).

With the help of modern monitoring system physicians can control nanorobot's movements and plaque destruction in real-time. It can be possible due to magnetic markers in each medical nanomachine, which will be unique for every device

In this way calcifications will be removed without surgery or another complex medical procedure. Unfortunately, this nanorobotic concept or equal medical treatment will be available only in next decade with proper nanotechnology development.

[1] Bertazzo, S. et al. Nano-analytical electron microscopy reveals fundamental insights into human cardiovascular tissue calcification. Nature Materials 12, 576-583 (2013).

[2] Kim MH, Kim HJ, Kim NN, Yoon HS, Ahn SH. "A rotational ablation tool for calcified atherosclerotic plaque removal", Biomed Microdevices. 2011 Dec;13(6):963-71. doi: 10.1007/s10544-011-9566-y.

[3] Robert A. Freitas Jr., Nanomedicine, Volume I: Basic Capabilities, Landes

####

About Nanobotmodels Company
Nanobotmodels was established in 2007 with the goal of developing highly innovative, digital graphics to depict actual and conceptual technologies via the synergistic fusion of art and science. The still nascent, yet prospectively powerful discipline of nanotechnology is poised to radically transform medicine, engineering, biotechnology, electronics and myriad other sectors in the relative near-term. Hence, visionary artistic renderings that portray various aspects of this exciting nanofuture will be beneficial in facilitating a clear understanding of its fundamental concepts to a broad demographic.

Nanobotmodels generates imaginative and engaging state-of-the-art nanotechnology and nanomedical illustrations and animations. Any prototypical component, device, system or far flung concept that might be conceived of can be translated into captivating and colorful photorealistic animated or static renderings and presentation materials…. We bring them all to life for you!

For more information, please click here

Copyright © Nanobotmodels Company

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Simulating magnetization in a Heisenberg quantum spin chain April 5th, 2024

NRL charters Navy’s quantum inertial navigation path to reduce drift April 5th, 2024

Innovative sensing platform unlocks ultrahigh sensitivity in conventional sensors: Lan Yang and her team have developed new plug-and-play hardware to dramatically enhance the sensitivity of optical sensors April 5th, 2024

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

Videos/Movies

New X-ray imaging technique to study the transient phases of quantum materials December 29th, 2022

Solvent study solves solar cell durability puzzle: Rice-led project could make perovskite cells ready for prime time September 23rd, 2022

Scientists prepare for the world’s smallest race: Nanocar Race II March 18th, 2022

Visualizing the invisible: New fluorescent DNA label reveals nanoscopic cancer features March 4th, 2022

Nanomedicine

New micromaterial releases nanoparticles that selectively destroy cancer cells April 5th, 2024

Good as gold - improving infectious disease testing with gold nanoparticles April 5th, 2024

Researchers develop artificial building blocks of life March 8th, 2024

Curcumin nanoemulsion is tested for treatment of intestinal inflammation: A formulation developed by Brazilian researchers proved effective in tests involving mice March 8th, 2024

Announcements

NRL charters Navy’s quantum inertial navigation path to reduce drift April 5th, 2024

Innovative sensing platform unlocks ultrahigh sensitivity in conventional sensors: Lan Yang and her team have developed new plug-and-play hardware to dramatically enhance the sensitivity of optical sensors April 5th, 2024

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

A simple, inexpensive way to make carbon atoms bind together: A Scripps Research team uncovers a cost-effective method for producing quaternary carbon molecules, which are critical for drug development April 5th, 2024

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project