Nanotechnology Now

Our NanoNews Digest Sponsors


Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > Researchers Optically Levitate a Glowing, Nanoscale Diamond

The researchers show photoluminescence from an optically levitated nano diamond. Photo by J. Adam Fenster/University of Rochester.
The researchers show photoluminescence from an optically levitated nano diamond.

Photo by J. Adam Fenster/University of Rochester.

Abstract:
Researchers at the University of Rochester have measured for the first time light emitted by photoluminescence from a nanodiamond levitating in free space. In a paper published this week in Optics Letters, they describe how they used a laser to trap nanodiamonds in space, and - using another laser - caused the diamonds to emit light at given frequencies.

Researchers Optically Levitate a Glowing, Nanoscale Diamond

Rochester, NY | Posted on August 12th, 2013

Researchers at the University of Rochester have measured for the first time light emitted by photoluminescence from a nanodiamond levitating in free space. In a paper published this week in Optics Letters, they describe how they used a laser to trap nanodiamonds in space, and - using another laser - caused the diamonds to emit light at given frequencies.

The experiment, led by Nick Vamivakas, an assistant professor of optics, demonstrates that it is possible to levitate diamonds as small as 100 nanometers (approximately one-thousandth the diameter of a human hair) in free space, by using a technique known as laser trapping.

"Now that we have shown we can levitate nanodiamonds and measure photoluminescence from defects inside the diamonds, we can start considering systems that could have applications in the field of quantum information and computing," said Vamivakas. He said an example of such a system would be an optomechanical resonator.

Vamivakas explained that optomechanical resonators are structures in which the vibrations of the system, in this case the trapped nanodiamond, can be controlled by light. "We are yet to explore this, but in theory we could encode information in the vibrations of the diamonds and extract it using the light they emit."

Possible avenues of interest in the long-term with these nano-optomechanical resonators include the creation of what are known as Schr÷dinger Cat states (macroscopic, or large-scale, systems that are in two quantum states at once). These resonators could also be used as extremely sensitive sensors of forces - for example, to measure tiny displacements in the positions of metal plates or mirrors in configurations used in microchips and understand friction better on the nanoscale.

"Levitating particles such as these could have advantages over other optomechanical oscillators that exist, as they are not attached to any large structures," Vamivakas explained. "This would mean they are easier to keep cool and it is expected that fragile quantum coherence, essential for these systems to work, will last sufficiently long for experiments to be performed."

The future experiments that Vamivakas and his team are planning build on previous work at Rochester by Lukas Novotny, a co-author of the paper and now at ETH in Zurich, Switzerland. Novotny and his group showed previously that by tweaking the trapping laser's properties, a particle can be pushed towards its quantum ground state. By linking the laser cooling of the crystal resonator with the spin of the internal defect it should be possible to monitor the changes in spin configuration of the internal defect - these changes are called Bohr spin quantum jumps - via the mechanical resonator's vibrations. Vamivakas explained that experiments like this would expand what we know about the classical-quantum boundary and address fundamental physics questions.

The light emitted by the nanodiamonds is due to photoluminescence. The defects inside the nanodiamonds absorb photons from the second laser - not the one that is trapping the diamonds - which excites the system and changes the spin. The system then relaxes and other photons are emitted. This process is also known as optical pumping.

The defects come about because of nitrogen vacancies, which occur when one or more of the carbon atoms in diamond is replaced by a nitrogen atom. The chemical structure is such that at the nitrogen site it is possible to excite electrons, using a laser, between different available energy levels. Previous experiments have shown that these nitrogen vacancy centers in diamonds are good, stable sources of single photons, which is why the researchers were keen to levitate these particles.

Using lasers to trap ions, atoms and more recently larger particles is a well-established field of physics. Nanodiamonds, however, had never been levitated. To position these 100 nanometers diamonds in the correct spot an aerosol containing dissolved nanodiamonds sprays into a chamber about 10 inches in diameter, where the laser's focus point is located. The diamonds are attracted to this focus point and when they drift into this spot they are trapped by the laser. Graduate student Levi Neukirch explains that sometimes "it takes a couple of squirts and in a few minutes we have a trapped nanodiamond; other times I can be here for half an hour before any diamond gets caught. Once a diamond wanders into the trap we can hold it for hours."

The Rochester researchers collaborated on this paper with Lukas Novotny, formerly at the University of Rochester and now at ETH Zurich, Switzerland, and with Jan Gieseler and Romain Quidant, at ICFO in Barcelona, Spain.

The researchers acknowledge the support from the University of Rochester, the European Community's Seventh Framework Program, Fundaciˇ privada CELLEX and from the U.S. Department of Energy.

####

About University of Rochester
The University of Rochester (www.rochester.edu) is one of the nation's leading private universities. Located in Rochester, N.Y., the University gives students exceptional opportunities for interdisciplinary study and close collaboration with faculty through its unique cluster-based curriculum. Its College, School of Arts and Sciences, and Hajim School of Engineering and Applied Sciences are complemented by its Eastman School of Music, Simon School of Business, Warner School of Education, Laboratory for Laser Energetics, School of Medicine and Dentistry, School of Nursing, Eastman Institute for Oral Health, and the Memorial Art Gallery.

For more information, please click here

Contacts:
Leonor Sierra

585-276-6264

Copyright © University of Rochester

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Animal study shows flexible, dissolvable silicon device promising for brain monitoring: Other applications include post-operative observation for vascular, cardiac, and orthopaedic procedures, finds Penn study May 5th, 2016

Speedy ion conduction in solid electrolytes clears road for advanced energy devices May 5th, 2016

Engineers create a better way to boil water -- with industrial, electronics applications May 5th, 2016

Clues on the path to a new lithium battery technology: Charging produces highly reactive singlet oxygen in lithium air batteries May 5th, 2016

Videos/Movies

Nuclear pores captured on film: Using an ultra fast-scanning atomic force microscope, researchers from the University of Basel have filmed 'living' nuclear pore complexes at work for the first time May 3rd, 2016

WiFi capacity doubled at less than half the size: Columbia Engineers develop the first on-chip RF circulator that doubles WiFi speeds with a single antenna -- could transform telecommunications April 18th, 2016

First-ever videos show how heat moves through materials at the nanoscale and speed of sound: Groundbreaking observations could help develop better, more efficient materials for electronics and alternative energy April 16th, 2016

Nanotubes assemble! Rice introduces 'Teslaphoresis' Reconfigured Tesla coil aligns, electrifies materials from a distance April 15th, 2016

Govt.-Legislation/Regulation/Funding/Policy

Animal study shows flexible, dissolvable silicon device promising for brain monitoring: Other applications include post-operative observation for vascular, cardiac, and orthopaedic procedures, finds Penn study May 5th, 2016

Speedy ion conduction in solid electrolytes clears road for advanced energy devices May 5th, 2016

Engineers create a better way to boil water -- with industrial, electronics applications May 5th, 2016

Clues on the path to a new lithium battery technology: Charging produces highly reactive singlet oxygen in lithium air batteries May 5th, 2016

Discoveries

Animal study shows flexible, dissolvable silicon device promising for brain monitoring: Other applications include post-operative observation for vascular, cardiac, and orthopaedic procedures, finds Penn study May 5th, 2016

Speedy ion conduction in solid electrolytes clears road for advanced energy devices May 5th, 2016

Engineers create a better way to boil water -- with industrial, electronics applications May 5th, 2016

Unique nano-capsules promise the targeted drug delivery: Russian scientists created unique nano-capsules for the targeted drug delivery May 5th, 2016

Announcements

Speedy ion conduction in solid electrolytes clears road for advanced energy devices May 5th, 2016

Engineers create a better way to boil water -- with industrial, electronics applications May 5th, 2016

Clues on the path to a new lithium battery technology: Charging produces highly reactive singlet oxygen in lithium air batteries May 5th, 2016

Unique nano-capsules promise the targeted drug delivery: Russian scientists created unique nano-capsules for the targeted drug delivery May 5th, 2016

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers

Animal study shows flexible, dissolvable silicon device promising for brain monitoring: Other applications include post-operative observation for vascular, cardiac, and orthopaedic procedures, finds Penn study May 5th, 2016

Speedy ion conduction in solid electrolytes clears road for advanced energy devices May 5th, 2016

Engineers create a better way to boil water -- with industrial, electronics applications May 5th, 2016

Clues on the path to a new lithium battery technology: Charging produces highly reactive singlet oxygen in lithium air batteries May 5th, 2016

Photonics/Optics/Lasers

Molybdenum disulfide holds promise for light absorption: Rice researchers probe light-capturing properties of atomically thin MoS2 May 5th, 2016

A compact, efficient single photon source that operates at ambient temperatures on a chip: Highly directional single photon source concept is expected to lead to a significant progress in producing compact, cheap, and efficient sources of quantum information bits for future appls May 3rd, 2016

Exploring phosphorene, a promising new material April 29th, 2016

Researchers create a first frequency comb of time-bin entangled qubits: Discovery is a significant step toward multi-channel quantum communication and higher capacity quantum computers April 28th, 2016

Research partnerships

Speedy ion conduction in solid electrolytes clears road for advanced energy devices May 5th, 2016

The intermediates in a chemical reaction photographed 'red-handed' Researchers at the UPV/EHU-University of the Basque Country have for the first time succeeded in imaging all the steps in a complex organic reaction and have resolved the mechanisms that explain it May 4th, 2016

Making invisible physics visible: The Jayich Lab has created a new sensor technology that captures nanoscale images with high spatial resolution and sensitivity May 2nd, 2016

Cooling graphene-based film close to pilot-scale production April 30th, 2016

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







Car Brands
Buy website traffic