Nanotechnology Now

Our NanoNews Digest Sponsors



Heifer International

Wikipedia Affiliate Button


android tablet pc

Home > Press > Nanodrug targeting breast cancer cells from the inside adds weapon: immune system attack: The multipronged approach directly attacks cancer cells, blocking the growth of cancer-supporting blood vessels and stimulating an antitumor immune response

Abstract:
A unique nanoscale drug that can carry a variety of weapons and sneak into cancer cells to break them down from the inside has a new component: a protein that stimulates the immune system to attack HER2-positive breast cancer cells.

Nanodrug targeting breast cancer cells from the inside adds weapon: immune system attack: The multipronged approach directly attacks cancer cells, blocking the growth of cancer-supporting blood vessels and stimulating an antitumor immune response

Los Angeles, CA | Posted on August 12th, 2013

The research team developing the drug - led by scientists at the Nanomedicine Research Center, part of the Maxine Dunitz Neurosurgical Institute in the Department of Neurosurgery at Cedars-Sinai Medical Center - conducted the study in laboratory mice with implanted human breast cancer cells. Mice receiving the drug lived significantly longer than untreated counterparts and those receiving only certain components of the drug, according to a recent article in the Journal of Controlled Release.

Researchers from the Samuel Oschin Comprehensive Cancer Institute at Cedars-Sinai, the Division of Surgical Oncology at UCLA, and the Molecular Biology Institute at UCLA also participated in the study.

Unlike other drugs that target cancer cells from the outside, often injuring normal cells as a side effect, this therapy consists of multiple drugs chemically bonded to a "nanoplatform" that functions as a transport vehicle.

HER2-positive cancers - making up 25 to 30 percent of breast and ovarian cancers - tend to be more aggressive and less responsive to treatment than others because the overactive HER2 gene makes excessive amounts of a protein that promotes cancer growth. One commonly used drug, Herceptin (trastuzumab), often is effective for a while, but many tumors become resistant within the first year of treatment and the drug can injure normal organs it contacts.

But Herceptin is an antibody to the HER2 gene - it naturally seeks out this protein - so the research team used key parts of Herceptin to guide the nanodrug into HER2-positive cancer cells.

"We genetically prepared a new ‘fusion gene' that consists of an immune-stimulating protein, interleukin-2, and a gene of Herceptin," said Julia Y. Ljubimova, MD, PhD, professor of neurosurgery and biomedical sciences and director of the Nanomedicine Research Center. "IL-2 activates a variety of immune cells but is not stable in blood plasma and does not home specifically to tumor cells. By attaching the new fusion antibody to the nanoplatform, we were able to deliver Herceptin directly to HER2-positive cancer cells, at the same time transporting IL-2 to the tumor site to stimulate the immune system. Attaching IL-2 to the platform helped stabilize the protein and allowed us to double the dosage that could be delivered to the tumor."

Ljubimova led the study with Manuel Penichet, MD, PhD, associate professor of surgery, microbiology, immunology and molecular genetics at the University of California, Los Angeles, David Geffen School of Medicine. Ljubimova said the UCLA collaborators developed the fusion gene, and Cedars-Sinai chemists Eggehard Holler, PhD, professor in the Department of Neurosurgery, and Hui Ding, PhD, assistant professor, performed the technically difficult task of attaching it to the nanoplatform. Ding is the journal article's first author.

The researchers also attached other components, such as molecules to block a protein (laminin-411) that cancer cells need to make new blood vessels for growth.

The nanodrug, Polycefin, is in an emerging class called nanobiopolymeric conjugates, nanoconjugates or nanobioconjugates. They are the latest evolution of molecular drugs designed to slow or stop cancers by blocking them in multiple ways. Polycefin is intended to slow their growth by entering cells and altering defined targets. The new version also stimulates the immune system to further weaken cancers.

"We believe this is the first time a drug has been designed for nano-immunology anti-cancer treatment," Ljubimova said.

Bioconjugates are drugs that contain chemical "modules" attached (conjugated) to a delivery vehicle by strong chemical bonds. The nanoconjugate exists as a single chemical unit, and the tight bonds prevent the components from getting damaged or separated in tissues or blood plasma during transit. With inventive drug engineering, the anti-tumor components activate inside tumor cells.

"More study is needed to confirm our findings, improve the effectiveness of this approach and shed light on the anti-cancer mechanisms at work, but it appears that the nanobioconjugate may represent a new generation of cancer therapeutics in which we launch a multipronged attack that directly kills cancer cells, blocks the growth of cancer-supporting blood vessels and stimulates a powerful antitumor immune response," Ljubimova said, adding that this and previous animal studies have found the nanodrug to be a safe and efficient delivery platform.

Nano researchers manipulate substances and materials at the atomic level, generally working with substances smaller than 100 nanometers. Cedars-Sinai's nanoconjugate is estimated to be about 27 nanometers wide. A human hair is 80,000 to 100,000 nanometers wide.

This study was supported in part by grants from the National Institutes of Health/National Cancer Institute (R01CA123459, U01CA151815, R01CA136841, K01CA138559. Additional support came from the UC MEXUS-CONACYT Fellowship Program, the Howard Hughes Medical Institute Gilliam Fellowship, the Whitcome Fellowship of the Molecular Biology Institute at UCLA, ANPCyT-FONARSEC PICT-PRH 2008-00315, the CONICET PIP no. 114-2011-01-00139, and the UBACYT No 200-2011-02-00027. The UCLA Flow Cytometry Core Facility is supported by NIH awards CA16042 and AI28697, the Jonsson Cancer Center, the UCLA AIDS Institute and the UCLA School of Medicine.

Citation: Journal of Controlled Release, "Polymalic acid nanobioconjugate for simultaneous immunostimulation and inhibition of tumor growth in HER2/neu-positive breast cancer"

####

For more information, please click here

Contacts:
Media Contact: Sandy Van
Telephone: 808-526-1708
Email:
Twitter: @CedarsSinaiSvan

Copyright © Cedars-Sinai Medical Center

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Los Alamos Researchers Uncover New Properties in Nanocomposite Oxide Ceramics for Reactor Fuel, Fast-Ion Conductors: Misfit dislocations are key to transport properties across material interfaces September 23rd, 2014

Production of Organometallic Frameworks in Least Possible Time September 23rd, 2014

New chip promising for tumor-targeting research September 22nd, 2014

Twisted graphene chills out: When two sheets of graphene are stacked in a special way, it is possible to cool down the graphene with a laser instead of heating it up, University of Manchester researchers have shown September 22nd, 2014

Govt.-Legislation/Regulation/Funding/Policy

Los Alamos Researchers Uncover New Properties in Nanocomposite Oxide Ceramics for Reactor Fuel, Fast-Ion Conductors: Misfit dislocations are key to transport properties across material interfaces September 23rd, 2014

Smallest possible diamonds form ultra-thin nanothreads: Diamond nanothreads are likely to have extraordinary properties, including strength and stiffness greater than that of today's strongest nanotubes and polymers September 22nd, 2014

Engineers show light can play seesaw at the nanoscale: Discovery is another step toward faster and more energy-efficient optical devices for computation and communication September 22nd, 2014

New chip promising for tumor-targeting research September 22nd, 2014

Nanomedicine

Production of Organometallic Frameworks in Least Possible Time September 23rd, 2014

Engineered proteins stick like glue — even in water: New adhesives based on mussel proteins could be useful for naval or medical applications September 22nd, 2014

New chip promising for tumor-targeting research September 22nd, 2014

Arrowhead to Present at BioCentury's NewsMakers in the Biotech Industry Conference September 19th, 2014

Discoveries

Los Alamos Researchers Uncover New Properties in Nanocomposite Oxide Ceramics for Reactor Fuel, Fast-Ion Conductors: Misfit dislocations are key to transport properties across material interfaces September 23rd, 2014

Production of Organometallic Frameworks in Least Possible Time September 23rd, 2014

Engineered proteins stick like glue — even in water: New adhesives based on mussel proteins could be useful for naval or medical applications September 22nd, 2014

Smallest possible diamonds form ultra-thin nanothreads: Diamond nanothreads are likely to have extraordinary properties, including strength and stiffness greater than that of today's strongest nanotubes and polymers September 22nd, 2014

Announcements

Los Alamos Researchers Uncover New Properties in Nanocomposite Oxide Ceramics for Reactor Fuel, Fast-Ion Conductors: Misfit dislocations are key to transport properties across material interfaces September 23rd, 2014

Production of Organometallic Frameworks in Least Possible Time September 23rd, 2014

Twisted graphene chills out: When two sheets of graphene are stacked in a special way, it is possible to cool down the graphene with a laser instead of heating it up, University of Manchester researchers have shown September 22nd, 2014

New star-shaped molecule breakthrough: Scientists at The University of Manchester have generated a new star-shaped molecule made up of interlocking rings, which is the most complex of its kind ever created September 22nd, 2014

Grants/Awards/Scholarships/Gifts/Contests/Honors/Records

New chip promising for tumor-targeting research September 22nd, 2014

SouthWest NanoTechnologies (SWeNT) Receives NIST Small Business Innovation Research (SBIR) Phase 1 Award to Produce Greater than 99% Semiconducting Single-Wall Carbon Nanotubes September 19th, 2014

Big Results Require Big Ambitions: Three young UCSB faculty receive CAREER awards from the National Science Foundation September 18th, 2014

Effective Nanotechnology Innovations to Receive Mustafa Prize September 16th, 2014

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More














ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2014 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE