Nanotechnology Now

Our NanoNews Digest Sponsors





Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > Chemists Design ‘Smart’ Nanoparticles to Improve Drug Delivery, DNA Self-Assembly

Associate Professor Mathew M. Maye supervises graduate students Colleen Alexander, left, and Kristen Hamner in his chemistry lab.
Associate Professor Mathew M. Maye supervises graduate students Colleen Alexander, left, and Kristen Hamner in his chemistry lab.

Abstract:
A team of chemists in SU's College of Arts and Scientists has used a temperature-sensitive polymer to regulate DNA interactions in both a DNA-mediated assembly system and a DNA-encoded drug-delivery system.

Chemists Design ‘Smart’ Nanoparticles to Improve Drug Delivery, DNA Self-Assembly

Syracuse, NY | Posted on August 10th, 2013

Their findings, led by Associate Professor Mathew M. Maye and graduate students Kristen Hamner and Colleen Alexander, may improve how nanomaterials self-assemble into functional devices and how anticancer drugs, including doxorubicin, are delivered into the body. More information is available in a July 30 article in ACS Nano, published by the American Chemical Society.

One area of nanoscience that connects a range of fields—including optics, chemical sensing and drug delivery and treatment—is the self-assembly of nanoparticles. During self-assembly, the chemistry attached to the nanoparticle interface drives a reaction. As a result, particles come together to form a solid, a chai or a small molecule-like cluster.

Maye and others have recently figured out how to use DNA linkages to create an array of structures. The reactions are fast and stable, he says, but can also be problematic.

"For example, we want to know how to turn a reaction on and off, without tedious changes to the procedure," says Maye. "We've been addressing this problem by providing a thermal trigger in the form of a smart polymer, which changes its structure at the nano level."

A smart polymer is a large molecule, made up of many atomic units, that changes structure when exposed to external stimuli, such as light, acidity or temperature.

Maye and his colleagues have synthesized a designer polymer that not only reacts to temperature, but also may be assembled to a gold nanoparticle. The novelty of this approach, he says, is that the nanoparticle possesses short segments of single-stranded DNA.

"This multipurpose functionality and added 'smart' component are indicative of where nanoscience is going," says Maye. "We want nanomaterials to perform many tasks at once, and we want to be able to turn their interactions on and off remotely."

Maye's team, therefore, has designed a system in which a high temperature (e.g., 50 degrees Celsius) causes polymer strands to shrink, thereby exposing and making them operational, and a low temperature causes them to extend, blocking their DNA recognition properties.

Maye says that, in one test, self-assembly between complementary DNA nanoparticles occurred at only a high temperature. In a second study, his team found that heat triggered the release of doxorubicin at the DNA shell of the encoded nanocarrier.

Recently invented by Maye and his SU colleagues, the nanocarrier boasts a six-fold increase in toxicity, compared to ones used in previous studies.

"What's novel about this approach is that interparticle linkages are dynamic and reconfigurable," Maye says. "Such reconfiguration may lead to smart solids and metamaterials that react to environmental stimuli, much the same way smart polymers react in bulk."

Maye and his team have also employed a number of advanced techniques to better understand the mechanisms of their system, including dynamic light scattering and small-angle X-ray scattering.

"Being able to control nanoparticle assembly with temperature allows us to fine-tune their reactions and form more predictable structures. It also gives us a more improved system in which to scale assembly," he says.

Maye goes on to explain that for DNA-encoded nanoparticles, such classes of particles are an excellent platform for drug delivery: "When combined with thermosensitive polymers such as the ones in our system, they could become very lucrative."

In addition to Maye, Hamner and Alexander, the article was co-authored by students from two National Science Foundation (NSF) Research Experiences for Undergraduates programs—one in SU's chemistry department and the other in the Syracuse Biomaterials Institute—both of which are sponsored by the NSF.

Maye's work is supported by the Air Force Office of Scientific Research, as part of his Presidential Early Career Award for Scientists and Engineers. Additional support is provided by SBI and by SU's Forensic and National Security Sciences Institute. Maye's work has also made use of X-ray scattering equipment in the Cornell High Energy Synchrotron Source lab at Cornell University.

####

For more information, please click here

Contacts:
Rob Enslin

315-443-3403

Copyright © Syracuse University

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Springer and Tsinghua University Press present the second Nano Research Award: Paul Alivisatos of the University of California Berkeley receives the honor for outstanding contributions in nanoscience July 30th, 2015

European Technology Platform for Nanomedicine and ENATRANS European Consortium Launch the 2nd edition of the Nanomedicine Award: The Award to be presented at BIO-Europe conference in Munich, November 2015 July 30th, 2015

Take a trip through the brain July 30th, 2015

This could replace your silicon computer chips: A new semiconductor material made from black phosphorus may be a candidate to replace silicon in future tech July 30th, 2015

Govt.-Legislation/Regulation/Funding/Policy

IEEE Photonics Society Applauds Rochester on Integrated Photonics Institute Win July 30th, 2015

Springer and Tsinghua University Press present the second Nano Research Award: Paul Alivisatos of the University of California Berkeley receives the honor for outstanding contributions in nanoscience July 30th, 2015

European Technology Platform for Nanomedicine and ENATRANS European Consortium Launch the 2nd edition of the Nanomedicine Award: The Award to be presented at BIO-Europe conference in Munich, November 2015 July 30th, 2015

Take a trip through the brain July 30th, 2015

Self Assembly

New computer model could explain how simple molecules took first step toward life: Two Brookhaven researchers developed theoretical model to explain the origins of self-replicating molecules July 28th, 2015

Spintronics: Molecules stabilizing magnetism: Organic molecules fixing the magnetic orientation of a cobalt surface/ building block for a compact and low-cost storage technology/ publication in Nature Materials July 25th, 2015

Imec introduces self-assembled monomolecular organic films to seal ultra-porous low- k materials: Method prevents leakage of barrier precursors during the interconnect metallization scheme July 15th, 2015

Clay sheets stack to form proton conductors: Model system demonstrates a new material property emerging from the assembly of nanoscale building blocks July 13th, 2015

Nanomedicine

European Technology Platform for Nanomedicine and ENATRANS European Consortium Launch the 2nd edition of the Nanomedicine Award: The Award to be presented at BIO-Europe conference in Munich, November 2015 July 30th, 2015

Take a trip through the brain July 30th, 2015

Sol-gel capacitor dielectric offers record-high energy storage July 30th, 2015

Newly-Developed Polymers Control Size of Nanoparticles during Production Process July 30th, 2015

Discoveries

Take a trip through the brain July 30th, 2015

This could replace your silicon computer chips: A new semiconductor material made from black phosphorus may be a candidate to replace silicon in future tech July 30th, 2015

Sol-gel capacitor dielectric offers record-high energy storage July 30th, 2015

Controlling Dynamic Behavior of Carbon Nanosheets in Structures Made Possible July 30th, 2015

Announcements

Take a trip through the brain July 30th, 2015

This could replace your silicon computer chips: A new semiconductor material made from black phosphorus may be a candidate to replace silicon in future tech July 30th, 2015

Sol-gel capacitor dielectric offers record-high energy storage July 30th, 2015

Controlling Dynamic Behavior of Carbon Nanosheets in Structures Made Possible July 30th, 2015

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers

Take a trip through the brain July 30th, 2015

This could replace your silicon computer chips: A new semiconductor material made from black phosphorus may be a candidate to replace silicon in future tech July 30th, 2015

Sol-gel capacitor dielectric offers record-high energy storage July 30th, 2015

Controlling Dynamic Behavior of Carbon Nanosheets in Structures Made Possible July 30th, 2015

Military

Take a trip through the brain July 30th, 2015

Sol-gel capacitor dielectric offers record-high energy storage July 30th, 2015

Researchers predict material with record-setting melting point July 27th, 2015

Reshaping the solar spectrum to turn light to electricity: UC Riverside researchers find a way to use the infrared region of the sun's spectrum to make solar cells more efficient July 27th, 2015

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project