Nanotechnology Now







Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > SU Chemists Develop ‘Fresh, New’ Approach to Making Alloy Nanomaterials: Potential applications include gas storage, heterogeneous catalysis and lithium-ion batteries

Associate Professor Mathew M. Maye, right, with research assistant Wenjie Wu G’11, G’13
Associate Professor Mathew M. Maye, right, with research assistant Wenjie Wu G’11, G’13

Abstract:
Chemists in The College of Arts and Sciences have figured out how to synthesize nanomaterials with stainless steel-like interfaces. Their discovery may change how the form and structure of nanomaterials are manipulated, particularly those used for gas storage, heterogeneous catalysis and lithium-ion batteries.

SU Chemists Develop ‘Fresh, New’ Approach to Making Alloy Nanomaterials: Potential applications include gas storage, heterogeneous catalysis and lithium-ion batteries

Syracuse, NY | Posted on August 10th, 2013

The findings are the subject of a July 24 article in the journal Small (Wiley-VCH, 2013), co-authored by associate professor Mathew M. Maye and research assistant Wenjie Wu G'11, G'13.

Until now, scientists have used many wet-chemical approaches—collectively known as colloidal synthesis—to manipulate reactions in which metallic ions form alloys at the nanoscale. Here, metal nanoparticles are typically 2 to 50 nanometers in size and have highly unique properties, including various colors, high reactivity and novel chemistry.

Maye and Wu are part of a growing team of international chemists and materials scientists devising new ways to alter the size, shape and composition of nanoparticles.

"At SU, we have developed a new synthetic pathway to tailor the internal microstructure of nanomaterials," says Maye, whose research spans inorganic chemistry, catalysis, materials science, self-assembly and biotechnology.

Maye's approach begins with a pre-synthesized iron nanoparticle core. After synthesizing the core in its crystalline metallic form, he and Wu chemically deposit thin shells of chromium onto the iron. When the "core/shell" nanoparticles are exposed to high temperatures, they anneal. Moreover, the iron and chromium diffuse into one another, forming an iron-chromium alloy shell. Thus, the "core/alloy" product has an interface similar to some forms of stainless steel.

Since stainless steel is known for its resistance to oxidation, the big challenge for Maye and Wu has been finding out how nanoparticles cope during this process.

"We've discovered that nanoparticles exhibit a unique behavior when oxidized," he says. "A thin, iron-chromium oxide shell forms, leaving behind an unoxidized iron core. Even more interesting is the fact that a void forms, separating the core from the shell. This phenomenon is known in materials science as Kirkendall Diffusion, or Vacancy Coalescence."

This kind of work, he adds, wouldn't be possible without high-resolution electron microscopy, X-ray diffraction and magnetic measurements.

Although "core/alloy" fabrication is a new approach, it may allow for more diverse forms of alloy nanomaterials.

"Most alloys we take for granted at the macroscale, such as steel, are hard to fabricate at the nanoscale, because of ease of oxidation and other specific conditions that are required," says Maye. "Our approach may open new doors."

A recipient of many honors and awards, including the Presidential Early Career Award for Scientists and Engineers, Maye joined SU's faculty in 2008.

Wu, whose expertise encompasses nanomaterials synthesis, was the lead graduate student on the project. In August, she earns a Ph.D. in inorganic chemistry from SU.

Maye's work is supported by the American Chemical Society Petroleum Research Fund. It has made use of the Cornell Center for Materials Research, which is part of the National Science Foundation's Materials Research Science and Engineering Centers, as well as the Binghamton University Analytical and Diagnostics Laboratory and the SUNY College of Environmental Science and Forestry Microscopy Facility.

####

For more information, please click here

Contacts:
Rob Enslin

315-443-3403

Copyright © Syracuse University

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

Download article:

Related News Press

News and information

The George Washington University Opens Science and Engineering Hall, Largest Building of Its Kind in D.C.: Building Represents Significant Investment in Research Programs and Facilities; Commitment to Solve Global Problems, Improve Lives of Millions March 5th, 2015

Anousheh Ansari Wins the National Space Society's Space Pioneer Award for "Service to the Space Community" March 5th, 2015

Enhanced Graphene Components for Next Generation Racing Yacht March 5th, 2015

Get ready for NanoDays! March 5th, 2015

Chemistry

Chromium-Centered Cycloparaphenylene Rings as New Tools for Making Functionalized Nanocarbons February 24th, 2015

Stretch and relax! -- Losing 1 electron switches magnetism on in dichromium February 23rd, 2015

A straightforward, rapid and continuous method to protect MOF nanocrystals against water February 9th, 2015

Research shows benefits of silicon carbide for sensors in harsh environments: Advantages identified across industries February 9th, 2015

Govt.-Legislation/Regulation/Funding/Policy

New research could lead to more efficient electrical energy storage March 4th, 2015

Energy-generating cloth could replace batteries in wearable devices March 4th, 2015

The taming of magnetic vortices: Unified theory for skyrmion-materials March 3rd, 2015

Black phosphorus is new 'wonder material' for improving optical communication March 3rd, 2015

Discoveries

Enhanced Graphene Components for Next Generation Racing Yacht March 5th, 2015

American Chemical Society Presidential Symposia: nanoscience, international chemistry March 5th, 2015

Magnetic vortices in nanodisks reveal information: Researchers from Dresden and Jülich use microwaves to read out information from smallest storage devices March 4th, 2015

CiQUS researchers obtain high-quality perovskites over large areas by a chemical method March 4th, 2015

Materials/Metamaterials

The taming of magnetic vortices: Unified theory for skyrmion-materials March 3rd, 2015

Breakthrough in OLED technology March 2nd, 2015

Moving molecule writes letters: Caging of molecules allows investigation of equilibrium thermodynamics February 27th, 2015

Graphene shows potential as novel anti-cancer therapeutic strategy: University of Manchester scientists have used graphene to target and neutralise cancer stem cells while not harming other cells February 26th, 2015

Announcements

The George Washington University Opens Science and Engineering Hall, Largest Building of Its Kind in D.C.: Building Represents Significant Investment in Research Programs and Facilities; Commitment to Solve Global Problems, Improve Lives of Millions March 5th, 2015

Anousheh Ansari Wins the National Space Society's Space Pioneer Award for "Service to the Space Community" March 5th, 2015

Enhanced Graphene Components for Next Generation Racing Yacht March 5th, 2015

Get ready for NanoDays! March 5th, 2015

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers

Strength in numbers: Researchers develop the first-ever quantum device that detects and corrects its own errors March 4th, 2015

Energy-generating cloth could replace batteries in wearable devices March 4th, 2015

Experiment and theory unite at last in debate over microbial nanowires: New model and experiments settle debate over metallic-like conductivity of microbial nanowires in bacterium March 4th, 2015

Magnetic vortices in nanodisks reveal information: Researchers from Dresden and Jülich use microwaves to read out information from smallest storage devices March 4th, 2015

Energy

CiQUS researchers obtain high-quality perovskites over large areas by a chemical method March 4th, 2015

UC research partnership explores how to best harness solar power March 2nd, 2015

Learning by eye: Silicon micro-funnels increase the efficiency of solar cells February 25th, 2015

Magnetic nanoparticles enhance performance of solar cells X-ray study points the way to higher energy yields February 25th, 2015

Battery Technology/Capacitors/Generators/Piezoelectrics/Thermoelectrics/Energy storage

New research could lead to more efficient electrical energy storage March 4th, 2015

Energy-generating cloth could replace batteries in wearable devices March 4th, 2015

Glass coating improves battery performance: To improve lithium-sulfur batteries, researchers added glass cage-like coating and graphene oxide March 2nd, 2015

Scientific breakthrough in rechargeable batteries: Researchers from Singapore and Québec Team Up to Develop Next-Generation Materials to Power Electronic Devices and Electric Vehicles February 28th, 2015

Grants/Awards/Scholarships/Gifts/Contests/Honors/Records

Anousheh Ansari Wins the National Space Society's Space Pioneer Award for "Service to the Space Community" March 5th, 2015

Enhanced Graphene Components for Next Generation Racing Yacht March 5th, 2015

Rice's Stephan Link honored for nanoscience research: The Welch Foundation honors ‘rising star’ with $100,000 Hackerman Award February 26th, 2015

Cutting-edge technology optimizes cancer therapy with nanomedicine drug combinations: UCLA bioengineers develop platform that offers personalized approach to treatment February 24th, 2015

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More










ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2015 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE