Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > The Molecule “Scanner”: Pitt invents the world’s smallest terahertz detector

An artist’s rendering of molecules being “screened” by a nanoscale terahertz spectrometer
An artist’s rendering of molecules being “screened” by a nanoscale terahertz spectrometer

Abstract:
Molecules could soon be "scanned" in a fashion similar to imaging screenings at airports, thanks to a detector developed by University of Pittsburgh physicists.

The detector, featured in a recent issue of Nano Letters, may have the ability to chemically identify single molecules using terahertz radiation—a range of light far below what the eye can detect.

The Molecule “Scanner”: Pitt invents the world’s smallest terahertz detector

Pittsburgh, PA | Posted on August 8th, 2013

"Our invention allows lines to be ‘written' and ‘erased' much in the manner that an Etch A Sketch® toy operates," said study coauthor Jeremy Levy, professor in the Department of Physics and Astronomy within the Kenneth P. Dietrich School of Arts and Sciences. "The only difference is that the smallest feature is a trillion times smaller than the children's toy, able to create conductive lines as narrow as two nanometers."

Terahertz radiation refers to a color range far beyond what the eye can see and is useful for identifying specific types of molecules. This type of radiation is generated and detected with the help of an ultrafast laser, a strobe light that turns on and off in less than 30 femtoseconds (a unit of time equal to 10-15-of a second). Terahertz imaging is commonly used in airport scanners, but has been hard to apply to individual molecules due to a lack of sources and detectors at those scales.

"We believe it would be possible to isolate and probe single nanostructures and even molecules—performing ‘terahertz spectroscopy' at the ultimate level of a single molecule," said Levy. "Such resolution will be unprecedented and could be useful for fundamental studies as well as more practical applications."

Levy and his team are currently performing spectroscopy of molecules and nanoparticles. In the future, they hope to work with a C60, a well-known molecule within the terahertz spectrum.

The oxide materials used for this research were provided by study coauthor Chang-Beom Eom, Theodore H. Geballe Professor and Harvey D. Spangler Distinguished Professor at the University of Wisconsin-Madison College of Engineering.

Additional collaborators include, from Pitt's Department of Physics and Astronomy, Research Assistant Professor Patrick Irvin, Yanjun Ma (A&S '13G), and Mengchen Huang (A&S '13). Also involved was the University of Wisconsin-Madison's Sangwoo Ryu and Chung Wung Bark.

The paper, "Broadband Terahertz Generation and Detection at 10 nm Scale," was published in Nano Letters, a publication produced by the American Chemical Society. The research was supported by grants from the United States Air Force Office of Scientific Research and the National Science Foundation.

####

For more information, please click here

Contacts:
B. Rose Huber

412-624-4356
Cell: 412-328-6008

Copyright © University of Pittsburgh

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

A nanoscale wireless communication system via plasmonic antennas: Greater control affords 'in-plane' transmission of waves at or near visible light August 27th, 2016

Forces of nature: Interview with microscopy innovators Gerd Binnig and Christoph Gerber August 26th, 2016

A promising route to the scalable production of highly crystalline graphene films August 26th, 2016

Graphene under pressure August 26th, 2016

Imaging

Forces of nature: Interview with microscopy innovators Gerd Binnig and Christoph Gerber August 26th, 2016

New approach to determining how atoms are arranged in materials August 25th, 2016

Govt.-Legislation/Regulation/Funding/Policy

Analog DNA circuit does math in a test tube: DNA computers could one day be programmed to diagnose and treat disease August 25th, 2016

New approach to determining how atoms are arranged in materials August 25th, 2016

Johns Hopkins scientists track metabolic pathways to find drug combination for pancreatic cancer August 25th, 2016

New electrical energy storage material shows its power: Nanomaterial combines attributes of both batteries and supercapacitors August 25th, 2016

Discoveries

A promising route to the scalable production of highly crystalline graphene films August 26th, 2016

Graphene under pressure August 26th, 2016

Nanofur for oil spill cleanup: Materials researchers learn from aquatic ferns: Hairy plant leaves are highly oil-absorbing / publication in bioinspiration & biomimetics / video on absorption capacity August 25th, 2016

Unraveling the crystal structure of a -70° Celsius superconductor, a world first: Significant advancement in the realization of room-temperature superconductors August 25th, 2016

Announcements

A nanoscale wireless communication system via plasmonic antennas: Greater control affords 'in-plane' transmission of waves at or near visible light August 27th, 2016

Forces of nature: Interview with microscopy innovators Gerd Binnig and Christoph Gerber August 26th, 2016

A promising route to the scalable production of highly crystalline graphene films August 26th, 2016

Graphene under pressure August 26th, 2016

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers

A nanoscale wireless communication system via plasmonic antennas: Greater control affords 'in-plane' transmission of waves at or near visible light August 27th, 2016

Forces of nature: Interview with microscopy innovators Gerd Binnig and Christoph Gerber August 26th, 2016

A promising route to the scalable production of highly crystalline graphene films August 26th, 2016

New electrical energy storage material shows its power: Nanomaterial combines attributes of both batteries and supercapacitors August 25th, 2016

Tools

Nanofiber scaffolds demonstrate new features in the behavior of stem and cancer cells August 25th, 2016

50 years after the release of the film 'Fantastic Voyage,' science upstages fiction: Science upstages fiction with nanorobotic agents designed to travel in the human body to treat cancer August 25th, 2016

University of Puerto Rico and NASA back in the news – XEI reports August 23rd, 2016

Spider silk: Mother Nature's bio-superlens August 22nd, 2016

Military

New electrical energy storage material shows its power: Nanomaterial combines attributes of both batteries and supercapacitors August 25th, 2016

Nanoparticles that speed blood clotting may someday save lives August 23rd, 2016

Curbing the life-long effects of traumatic brain injury August 19th, 2016

Lab team spins ginger into nanoparticles to heal inflammatory bowel disease August 19th, 2016

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







Car Brands
Buy website traffic