Nanotechnology Now

Our NanoNews Digest Sponsors





Heifer International

Wikipedia Affiliate Button


android tablet pc

Home > Press > Size matters in nanocrystals' ability to adsorb/release gases

These are palladium nanocrystals.

Credit: Bardhan Laboratory
These are palladium nanocrystals.

Credit: Bardhan Laboratory

Abstract:
More efficient catalytic converters on autos, improved batteries and more sensitive gas sensors are some of the potential benefits of a new system that can directly measure the manner in which nanocrystals adsorb and release hydrogen and other gases.

Size matters in nanocrystals' ability to adsorb/release gases

Nashville, TN | Posted on August 8th, 2013

The technique, which was developed by Vanderbilt University Assistant Professor of Chemical and Biomolecular Engineering Rizia Bardhan, is described in a paper published online Aug. 4 by the journal Nature Materials.

In the last 30 years, there has been a tremendous amount of research studying nanocrystals - tiny crystals sized between one to 100 nanometers in size (a nanometer is to an inch what an inch is to 400 miles) - because of the expectation that they have unique physical and chemical properties that can be used in a broad range of applications.

One class of applications depends on nanocrystals' ability to grab specific molecules and particles out the air, hold on to them and then release them: a process called adsorption and desorption. Progress in this area has been hindered by limitations in existing methods for measuring the physical and chemical changes that take place in individual nanocrystals during the process. As a result, advances have been achieved by trial-and-error and have been limited to engineered samples and specific geometries.

"Our technique is simple, direct and uses off-the shelf instruments so other researchers should have no difficulty using it," said Bardhan. Collaborators in the development were Vanderbilt Assistant Professor of Mechanical Engineering Cary Pint, Ali Javey from the University of California, Berkeley and Lester Hedges, Stephen Whitelam and Jeffrey Urban from the Lawrence Berkeley National Laboratory.

The method is based on a standard procedure called fluorescence spectroscopy. A laser beam is focused on the target nanocrystals, causing them to fluoresce. As the nanocrystals adsorb the gas molecules, the strength of their fluorescent dims and as they release the gas molecules, it recovers.

"The fluorescence effect is very subtle and very sensitive to differences in nanocrystal size," she explained. "To see it you must use nanocrystals that are uniform in size." That is one reason why the effect wasn't observed before: Fabrication techniques such as ball milling and other wet-chemical approaches that have been widely used produce nanocrystals in a range of different sizes. These differences are enough to mask the effect.

To test their technique, the researchers studied hydrogen gas sensing with nanocrystals made out of palladium. They choose palladium because it is very stable and it readily releases adsorbed hydrogen. They used hydrogen because of the interest in using it as a replacement for gasoline. One of the major technical obstacles to this scenario is developing a safe and cost-effective storage method. A nanocrystal-based metal hydride system is one of the promising approaches under development.

The measurements they made revealed that the size of the nanocrystals have a much stronger effect on the rate that the material can adsorb and release hydrogen and the amount of hydrogen that the material can absorb than previously expected - all key properties for a hydrogen storage system. The smaller the particle size, the faster the material can absorb the gas, the more gas it can absorb and faster it can release it.

"In the past, people thought that the size effect was limited to sizes less than 15 to 20 nanometers, but we found that it extends up to 100 nanometers," said Bardhan.

The researchers also determined that the adsorption/desorption rate was determined by just three factors: pressure, temperature and nanocrystal size. They did not find that additional factors such as defects and strain had a significant effect as previously suggested. Based on this new information, they created a simple computer simulation that can predict the adsorption/desorption rates of various types and size ranges of nanocrystals with a variety of different gases.

"This makes it possible to optimize a wide range of nanocrystal applications, including hydrogen storage systems, catalytic converters, batteries, fuel cells and supercapacitors," Bardhan said.

The research was funded by Department of Energy grants KC0202020 and AC02-05CH11231.

####

For more information, please click here

Contacts:
David F. Salisbury

615-343-6803

Copyright © Vanderbilt University

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Nano Ruffles in Brain Matter: Freiburg researchers decipher the role of nanostructures around brain cells in central nervous system function October 31st, 2014

Gold nanoparticle chains confine light to the nanoscale October 31st, 2014

'Nanomotor lithography' answers call for affordable, simpler device manufacturing October 31st, 2014

Device invented at Johns Hopkins provides up-close look at cancer on the move: Microscopic view of metastasis could give insight about how to keep cancer in check October 31st, 2014

Govt.-Legislation/Regulation/Funding/Policy

Gold nanoparticle chains confine light to the nanoscale October 31st, 2014

'Nanomotor lithography' answers call for affordable, simpler device manufacturing October 31st, 2014

Device invented at Johns Hopkins provides up-close look at cancer on the move: Microscopic view of metastasis could give insight about how to keep cancer in check October 31st, 2014

'Electronic skin' could improve early breast cancer detection October 29th, 2014

Discoveries

Nano Ruffles in Brain Matter: Freiburg researchers decipher the role of nanostructures around brain cells in central nervous system function October 31st, 2014

Gold nanoparticle chains confine light to the nanoscale October 31st, 2014

'Nanomotor lithography' answers call for affordable, simpler device manufacturing October 31st, 2014

Device invented at Johns Hopkins provides up-close look at cancer on the move: Microscopic view of metastasis could give insight about how to keep cancer in check October 31st, 2014

Announcements

Nano Ruffles in Brain Matter: Freiburg researchers decipher the role of nanostructures around brain cells in central nervous system function October 31st, 2014

Gold nanoparticle chains confine light to the nanoscale October 31st, 2014

'Nanomotor lithography' answers call for affordable, simpler device manufacturing October 31st, 2014

Device invented at Johns Hopkins provides up-close look at cancer on the move: Microscopic view of metastasis could give insight about how to keep cancer in check October 31st, 2014

Energy

Gold nanoparticle chains confine light to the nanoscale October 31st, 2014

Iranians Present Model to Predict Photocatalytic Process in Removal of Pollutants October 30th, 2014

New solar power material converts 90 percent of captured light into heat: SunShot Project aims to make solar cost competitive October 29th, 2014

New Compact SIMS at 61st AVS | Visit us on Booth 311 October 28th, 2014

Automotive/Transportation

Production of Anticorrosive Chromate Nanocoatings in Iran September 27th, 2014

Teijin Aramid’s carbon nanotube fibers awarded with Paul Schlack prize: New generation super fibers bring wave of innovations to fiber market September 25th, 2014

Next-Gen Luxury RV From Global Caravan Technologies Will Offer MagicView Roof and Windshield Using SPD-SmartGlass Technology From Research Frontiers: Recreational Vehicle Manufacturer Global Caravan Technologies (GCT) Features 28 Square Feet of MagicView™ SPD-SmartGlass September 17th, 2014

Toward making lithium-sulfur batteries a commercial reality for a bigger energy punch September 17th, 2014

Battery Technology/Capacitors/Generators/Piezoelectrics/Thermoelectrics/Energy storage

Super stable garnet ceramics may be ideal for high-energy lithium batteries October 21st, 2014

Graphenea opens US branch October 16th, 2014

NTU develops ultra-fast charging batteries that last 20 years October 14th, 2014

Electrically conductive plastics promising for batteries, solar cells October 10th, 2014

Fuel Cells

National Synchrotron Light Source II Achieves 'First Light' October 23rd, 2014

Unique catalysts for hydrogen fuel cells synthesized in ordinary kitchen microwave oven October 14th, 2014

Researchers Pump Up Oil Accumulation in Plant Leaves: Method could greatly boost energy content of crops grown for fuel October 8th, 2014

Platinum meets its match in quantum dots from coal: Rice University's cheap hybrid outperforms rare metal as fuel-cell catalyst October 1st, 2014

NanoNews-Digest
The latest news from around the world, FREE





  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More














ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2014 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE