Nanotechnology Now

Our NanoNews Digest Sponsors





Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > Magnetic switching simplified

Spin current (blue) and spin accumulation (red) in layer systems composed of platinum (bottom) and cobalt produce a torque that influences the orientation of the magnetic moments in the cobalt layer (illustrated by the red and green bar magnets).

Credit: Forschungszentrum Jülich
Spin current (blue) and spin accumulation (red) in layer systems composed of platinum (bottom) and cobalt produce a torque that influences the orientation of the magnetic moments in the cobalt layer (illustrated by the red and green bar magnets).

Credit: Forschungszentrum Jülich

Abstract:
An international team of researchers has described a new physical effect that could be used to develop more efficient magnetic chips for information processing. The quantum mechanical effect makes it easier to produce spin-polarized currents necessary for the switching of magnetically stored information. The research findings were published online on 28 July in the high-impact journal Nature Nanotechnology (DOI:10.1038/NNANO.2013.145).

Magnetic switching simplified

Berlin, Germany | Posted on August 8th, 2013

Random-access memory is the short-term memory in computers. It buffers the programs and files currently in use in electronic form, in numerous tiny capacitors. As capacitors discharge over time, they have to be recharged regularly to ensure that no data are lost. This costs time and energy, and an unplanned power failure can result in data being lost for good.

Magnetic Random Access Memories (MRAMs), on the other hand, store information in tiny magnetic areas. This is a fast process that functions without a continuous power supply. In spite of this, MRAMs have yet to be implemented on a large scale, as their integration density is still too low, and they use too much energy, are difficult to produce, and cost too much.

One reason for this is that spin-polarized currents, or spin currents for short, are needed to switch the magnetic areas of the MRAMs. Spin is the intrinsic angular momentum of electrons that gives materials their magnetic properties, and it can point in two directions. Spin currents are electric currents that possess only one of these two spin types. Similar to the way in which the Earth's magnetic field affects the needle of a compass, a current of one of the spin types influences a magnetic layer and can cause it to flip.

To produce spin currents up to now, the desired spin type was filtered from normal electric current. This required special filter structures and high current densities. Thanks to the new effect identified by researchers from Jülich, Barcelona, Grenoble, and Zurich, magnetic information could now be switched more easily.

"We no longer need spin filters. Instead, we produce the spin current directly where it will be used. All that is needed is a layer stack made of cobalt and platinum," says Dr. Frank Freimuth from the Peter Grünberg Institute and the Institute for Advanced Simulation at Forschungszentrum Jülich. This reduces the amount of space required, makes the system more robust, and may simplify the production of magnetic chips.

An electric current, conducted through the stack at the interface, separates the spins in the platinum layer and transports only one spin type into the magnetic cobalt layer. This creates a torque in this layer that can reverse the magnetization. "Spin torques had already been observed in double layer systems in the past," says the physicist, who is part of the Young Investigators Group on Topical Nanoelectronics headed by Prof. Yuriy Mokrousov. "The fact that we have conclusively explained for the first time how they are created is a scientific breakthrough, because this will enable us to produce them selectively and investigate them in more detail."

The researchers identified two mechanisms that combine to produce the new effect, which they have dubbed 'spin-orbit torque': spin-orbit coupling and the exchange interaction. Spin-orbit coupling is a well-known relativistic quantum phenomenon and the reason why all electron spins of one type move from the platinum to the cobalt layer. Within the cobalt layer, the layer's magnetic orientation then interacts with the spins via the exchange interaction.

The researchers tested their theory successfully in experiments. Their next step is to calculate the effect in other materials with stronger spin-torque coupling to find out whether the effect is even more apparent in other material combinations.

Original publication:

Symmetry and magnitude of spin-orbit torques in ferromagnetic heterostructures; K. Garello et al.; Nature Nanotechnology. Published online 28 July 2013; DOI:10.1038/NNANO.2013.145.

####

About Helmholtz Association
The Helmholtz Association is Germany's largest scientific research organisation. A total of 36,000 staff work in its 18 scientific-technical and biological-medical research centres. The Association's annual budget amounts to more than €3.8 billion. The Federal and Länder authorities share around 70% of the total budget in a ratio of 90:10. The remaining 30% of the budget is acquired by the Helmholtz Centres in the form of contract funding.

For more information, please click here

Contacts:
Angela Wenzik

49-246-161-6048

Copyright © Helmholtz Association

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

Research at Quantum Theory of Materials (PGI-1/IAS-1):

Young Investigators Group on Topical Nanoelectronics:

Related News Press

News and information

Springer and Tsinghua University Press present the second Nano Research Award: Paul Alivisatos of the University of California Berkeley receives the honor for outstanding contributions in nanoscience July 30th, 2015

European Technology Platform for Nanomedicine and ENATRANS European Consortium Launch the 2nd edition of the Nanomedicine Award: The Award to be presented at BIO-Europe conference in Munich, November 2015 July 30th, 2015

Take a trip through the brain July 30th, 2015

This could replace your silicon computer chips: A new semiconductor material made from black phosphorus may be a candidate to replace silicon in future tech July 30th, 2015

Chip Technology

This could replace your silicon computer chips: A new semiconductor material made from black phosphorus may be a candidate to replace silicon in future tech July 30th, 2015

March 2016; 6th Int'l Conference on Nanostructures in Iran July 29th, 2015

Meet the high-performance single-molecule diode: Major milestone in molecular electronics scored by Berkeley Lab and Columbia University team July 29th, 2015

Short wavelength plasmons observed in nanotubes: Berkeley Lab researchers create Ludinger liquid plasmons in metallic SWNTs July 28th, 2015

Memory Technology

Controlling phase changes in solids: Controlling phase changes in solids July 29th, 2015

Reshaping the solar spectrum to turn light to electricity: UC Riverside researchers find a way to use the infrared region of the sun's spectrum to make solar cells more efficient July 27th, 2015

Spintronics: Molecules stabilizing magnetism: Organic molecules fixing the magnetic orientation of a cobalt surface/ building block for a compact and low-cost storage technology/ publication in Nature Materials July 25th, 2015

Better memory with faster lasers July 14th, 2015

Discoveries

Take a trip through the brain July 30th, 2015

This could replace your silicon computer chips: A new semiconductor material made from black phosphorus may be a candidate to replace silicon in future tech July 30th, 2015

Sol-gel capacitor dielectric offers record-high energy storage July 30th, 2015

Controlling Dynamic Behavior of Carbon Nanosheets in Structures Made Possible July 30th, 2015

Announcements

Take a trip through the brain July 30th, 2015

This could replace your silicon computer chips: A new semiconductor material made from black phosphorus may be a candidate to replace silicon in future tech July 30th, 2015

Sol-gel capacitor dielectric offers record-high energy storage July 30th, 2015

Controlling Dynamic Behavior of Carbon Nanosheets in Structures Made Possible July 30th, 2015

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers

Take a trip through the brain July 30th, 2015

This could replace your silicon computer chips: A new semiconductor material made from black phosphorus may be a candidate to replace silicon in future tech July 30th, 2015

Sol-gel capacitor dielectric offers record-high energy storage July 30th, 2015

Controlling Dynamic Behavior of Carbon Nanosheets in Structures Made Possible July 30th, 2015

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project