Nanotechnology Now

Our NanoNews Digest Sponsors


Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > DNA nanorobots find and tag cellular targets

This graphic shows a molecular robot (automaton) in action. To tag cells (grey circle) that display the Mi, Mj, and Mk receptors, five different components of a molecular robot are deployed. Each of the first three components consists of DNA and an antibody; one antibody binds to each receptor, bringing its DNA (represented by the colored lines) close together on the cell. The fourth DNA component, represented by the single red line, then initiates a chain reaction by pulling the red DNA strand away from the first antibody. That causes the blue DNA strand to change position, followed by the green DNA strand. In the final step, the last antibody pulls a fluorescent DNA strand (labeled F) from the fifth component, completing the action of the robot.

Credit: Milan Stojanovic, Ph.D./Columbia University Medical Center
This graphic shows a molecular robot (automaton) in action. To tag cells (grey circle) that display the Mi, Mj, and Mk receptors, five different components of a molecular robot are deployed. Each of the first three components consists of DNA and an antibody; one antibody binds to each receptor, bringing its DNA (represented by the colored lines) close together on the cell. The fourth DNA component, represented by the single red line, then initiates a chain reaction by pulling the red DNA strand away from the first antibody. That causes the blue DNA strand to change position, followed by the green DNA strand. In the final step, the last antibody pulls a fluorescent DNA strand (labeled F) from the fifth component, completing the action of the robot.

Credit: Milan Stojanovic, Ph.D./Columbia University Medical Center

Abstract:
Researchers at Columbia University Medical Center, working with their collaborators at the Hospital for Special Surgery, have created a fleet of molecular "robots" that can home in on specific human cells and mark them for drug therapy or destruction.

DNA nanorobots find and tag cellular targets

New York, NY | Posted on August 7th, 2013

The nanorobots—a collection of DNA molecules, some attached to antibodies —were designed to seek a specific set of human blood cells and attach a fluorescent tag to the cell surfaces. Details of the system were published July 28, 2013, in the online edition of Nature Nanotechnology.

"This opens up the possibility of using such molecules to target, treat, or kill specific cells without affecting similar healthy cells," said the study's senior investigator, Milan Stojanovic, PhD, associate professor of medicine and of biomedical engineering at Columbia University Medical Center. "In our experiment, we tagged the cells with a fluorescent marker; but we could replace that with a drug or with a toxin to kill the cell."

Though other DNA nanorobots have been designed to deliver drugs to cells, the advantage of Stojanovic's fleet is its ability to distinguish cell populations that do not share a single distinctive feature.

Cells, including cancer cells, rarely possess a single, exclusive feature that sets them apart from all other cells. This makes it difficult to design drugs without side effects. Drugs can be designed to target cancer cells with a specific receptor, but healthy cells with the same receptor will also be targeted.

The only way to target cells more precisely is to identify cells based on a collection of features. "If we look for the presence of five, six, or more proteins on the cell surface, we can be more selective," Dr. Stojanovic said. Large cell-sorting machines have the ability to identify cells based on multiple proteins, but until now, molecular therapeutics have not had that capability.

How It Works

Instead of building a single complex molecule to identify multiple features of a cell surface, Dr. Stojanovic and his colleagues at Columbia used a different, and potentially easier, approach based on multiple simple molecules, which together form a robot (or automaton, as the authors prefer calling it).

To identify a cell possessing three specific surface proteins, Dr. Stojanovic first constructed three different components for molecular robots. Each component consisted of a piece of double-stranded DNA attached to an antibody specific to one of the surface proteins. When these components are added to a collection of cells, the antibody portions of the robot bind to their respective proteins (in the figure, CD45, CD3, and CD8) and work in concert.

On cells where all three components are attached, a robot is functional and a fourth component (labeled 0 below) initiates a chain reaction among the DNA strands. Each component swaps a strand of DNA with another, until the end of the swap, when the last antibody obtains a strand of DNA that is fluorescently labeled.

At the end of the chain reaction—which takes less than 15 minutes in a sample of human blood—only cells with the three surface proteins are labeled with the fluorescent marker.

"We have demonstrated our concept with blood cells because their surface proteins are well known, but in principle our molecules could be deployed anywhere in the body," Dr. Stojanovic said. In addition, the system can be expanded to identify four, five, or even more surface proteins.

Now the researchers must show that their molecular robots work in a living animal; the next step will be experiments in mice.

This research was supported by the National Institutes of Health (R21CA128452, RC2CA147925, R21EB014477 and RGM104960), the National Science Foundation (CCF-0218262, CCF-0621600, ECCS-1026591, and CBET-1033288), the National Aeronautics and Space Administration (NAS2-02039), and the Lymphoma and Leukemia Foundation.

The researchers declare no financial or other conflicts of interests.

####

About Columbia University Medical Center
Columbia University Medical Center provides international leadership in basic, preclinical, and clinical research; medical and health sciences education; and patient care. The medical center trains future leaders and includes the dedicated work of many physicians, scientists, public health professionals, dentists, and nurses at the College of Physicians and Surgeons, the Mailman School of Public Health, the College of Dental Medicine, the School of Nursing, the biomedical departments of the Graduate School of Arts and Sciences, and allied research centers and institutions. Columbia University Medical Center is home to the largest medical research enterprise in New York City and State and one of the largest faculty medical practices in the Northeast. For more information, visit cumc.columbia.edu or columbiadoctors.org.

For more information, please click here

Contacts:
Karin Eskenazi

212-342-0508

Copyright © Columbia University Medical Center

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Scientists illuminate a hidden regulator in gene transcription: New super-resolution technique visualizes important role of short-lived enzyme clusters May 27th, 2016

Doubling down on Schrödinger's cat May 27th, 2016

Finding a new formula for concrete: Researchers look to bones and shells as blueprints for stronger, more durable concrete May 26th, 2016

Deep Space Industries and SFL selected to provide satellites for HawkEye 360’s Pathfinder mission: The privately-funded space-based global wireless signal monitoring system will be developed by Deep Space Industries and UTIAS Space Flight Laboratory May 26th, 2016

Govt.-Legislation/Regulation/Funding/Policy

Scientists illuminate a hidden regulator in gene transcription: New super-resolution technique visualizes important role of short-lived enzyme clusters May 27th, 2016

Doubling down on Schrödinger's cat May 27th, 2016

Harnessing solar and wind energy in one device could power the 'Internet of Things' May 26th, 2016

Thermal modification of wood and a complex study of its properties by magnetic resonance May 26th, 2016

Molecular Machines

Little ANTs: Researchers build the world's tiniest engine May 3rd, 2016

Researchers create artificial protein to control assembly of buckyballs April 27th, 2016

Physicists build engine consisting of one atom: World's smallest heat engine uses just a single particle April 17th, 2016

Revealing the fluctuations of flexible DNA in 3-D: First-of-their-kind images by Berkeley Lab-led research team could aid in use of DNA to build nanoscale devices March 31st, 2016

Molecular Nanotechnology

Little ANTs: Researchers build the world's tiniest engine May 3rd, 2016

Researchers create artificial protein to control assembly of buckyballs April 27th, 2016

Physicists build engine consisting of one atom: World's smallest heat engine uses just a single particle April 17th, 2016

Physicists prove energy input predicts molecular behavior: Theoretical proof could lead to more reliable nanomachines March 22nd, 2016

Nanomedicine

Scientists illuminate a hidden regulator in gene transcription: New super-resolution technique visualizes important role of short-lived enzyme clusters May 27th, 2016

Supercrystals with new architecture can enhance drug synthesis May 24th, 2016

Nanoscale Trojan horses treat inflammation May 24th, 2016

Tiny packages may pack powerful treatment for brain tumors: Nanocarrier provides efficient delivery of chemotherapeutic drug May 23rd, 2016

Discoveries

Scientists illuminate a hidden regulator in gene transcription: New super-resolution technique visualizes important role of short-lived enzyme clusters May 27th, 2016

Doubling down on Schrödinger's cat May 27th, 2016

PETA science group publishes a review on pulmonary effects of nanomaterials: Archives of Toxicology publishes a review of scientific studies on fibrotic potential of nanomaterials May 26th, 2016

Harnessing solar and wind energy in one device could power the 'Internet of Things' May 26th, 2016

Announcements

Scientists illuminate a hidden regulator in gene transcription: New super-resolution technique visualizes important role of short-lived enzyme clusters May 27th, 2016

Doubling down on Schrödinger's cat May 27th, 2016

Finding a new formula for concrete: Researchers look to bones and shells as blueprints for stronger, more durable concrete May 26th, 2016

Deep Space Industries and SFL selected to provide satellites for HawkEye 360’s Pathfinder mission: The privately-funded space-based global wireless signal monitoring system will be developed by Deep Space Industries and UTIAS Space Flight Laboratory May 26th, 2016

Research partnerships

Finding a new formula for concrete: Researchers look to bones and shells as blueprints for stronger, more durable concrete May 26th, 2016

The next generation of carbon monoxide nanosensors May 26th, 2016

Revealing the nature of magnetic interactions in manganese oxide: New technique for probing local magnetic interactions confirms 'superexchange' model that explains how the material gets its long-range magnetic order May 25th, 2016

Light can 'heal' defects in new solar cell materials: Defects in some new electronic materials can be removed by making ions move under illumination May 24th, 2016

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







Car Brands
Buy website traffic