Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > DNA nanorobots find and tag cellular targets

This graphic shows a molecular robot (automaton) in action. To tag cells (grey circle) that display the Mi, Mj, and Mk receptors, five different components of a molecular robot are deployed. Each of the first three components consists of DNA and an antibody; one antibody binds to each receptor, bringing its DNA (represented by the colored lines) close together on the cell. The fourth DNA component, represented by the single red line, then initiates a chain reaction by pulling the red DNA strand away from the first antibody. That causes the blue DNA strand to change position, followed by the green DNA strand. In the final step, the last antibody pulls a fluorescent DNA strand (labeled F) from the fifth component, completing the action of the robot.

Credit: Milan Stojanovic, Ph.D./Columbia University Medical Center
This graphic shows a molecular robot (automaton) in action. To tag cells (grey circle) that display the Mi, Mj, and Mk receptors, five different components of a molecular robot are deployed. Each of the first three components consists of DNA and an antibody; one antibody binds to each receptor, bringing its DNA (represented by the colored lines) close together on the cell. The fourth DNA component, represented by the single red line, then initiates a chain reaction by pulling the red DNA strand away from the first antibody. That causes the blue DNA strand to change position, followed by the green DNA strand. In the final step, the last antibody pulls a fluorescent DNA strand (labeled F) from the fifth component, completing the action of the robot.

Credit: Milan Stojanovic, Ph.D./Columbia University Medical Center

Abstract:
Researchers at Columbia University Medical Center, working with their collaborators at the Hospital for Special Surgery, have created a fleet of molecular "robots" that can home in on specific human cells and mark them for drug therapy or destruction.

DNA nanorobots find and tag cellular targets

New York, NY | Posted on August 7th, 2013

The nanorobots—a collection of DNA molecules, some attached to antibodies —were designed to seek a specific set of human blood cells and attach a fluorescent tag to the cell surfaces. Details of the system were published July 28, 2013, in the online edition of Nature Nanotechnology.

"This opens up the possibility of using such molecules to target, treat, or kill specific cells without affecting similar healthy cells," said the study's senior investigator, Milan Stojanovic, PhD, associate professor of medicine and of biomedical engineering at Columbia University Medical Center. "In our experiment, we tagged the cells with a fluorescent marker; but we could replace that with a drug or with a toxin to kill the cell."

Though other DNA nanorobots have been designed to deliver drugs to cells, the advantage of Stojanovic's fleet is its ability to distinguish cell populations that do not share a single distinctive feature.

Cells, including cancer cells, rarely possess a single, exclusive feature that sets them apart from all other cells. This makes it difficult to design drugs without side effects. Drugs can be designed to target cancer cells with a specific receptor, but healthy cells with the same receptor will also be targeted.

The only way to target cells more precisely is to identify cells based on a collection of features. "If we look for the presence of five, six, or more proteins on the cell surface, we can be more selective," Dr. Stojanovic said. Large cell-sorting machines have the ability to identify cells based on multiple proteins, but until now, molecular therapeutics have not had that capability.

How It Works

Instead of building a single complex molecule to identify multiple features of a cell surface, Dr. Stojanovic and his colleagues at Columbia used a different, and potentially easier, approach based on multiple simple molecules, which together form a robot (or automaton, as the authors prefer calling it).

To identify a cell possessing three specific surface proteins, Dr. Stojanovic first constructed three different components for molecular robots. Each component consisted of a piece of double-stranded DNA attached to an antibody specific to one of the surface proteins. When these components are added to a collection of cells, the antibody portions of the robot bind to their respective proteins (in the figure, CD45, CD3, and CD8) and work in concert.

On cells where all three components are attached, a robot is functional and a fourth component (labeled 0 below) initiates a chain reaction among the DNA strands. Each component swaps a strand of DNA with another, until the end of the swap, when the last antibody obtains a strand of DNA that is fluorescently labeled.

At the end of the chain reaction—which takes less than 15 minutes in a sample of human blood—only cells with the three surface proteins are labeled with the fluorescent marker.

"We have demonstrated our concept with blood cells because their surface proteins are well known, but in principle our molecules could be deployed anywhere in the body," Dr. Stojanovic said. In addition, the system can be expanded to identify four, five, or even more surface proteins.

Now the researchers must show that their molecular robots work in a living animal; the next step will be experiments in mice.

This research was supported by the National Institutes of Health (R21CA128452, RC2CA147925, R21EB014477 and RGM104960), the National Science Foundation (CCF-0218262, CCF-0621600, ECCS-1026591, and CBET-1033288), the National Aeronautics and Space Administration (NAS2-02039), and the Lymphoma and Leukemia Foundation.

The researchers declare no financial or other conflicts of interests.

####

About Columbia University Medical Center
Columbia University Medical Center provides international leadership in basic, preclinical, and clinical research; medical and health sciences education; and patient care. The medical center trains future leaders and includes the dedicated work of many physicians, scientists, public health professionals, dentists, and nurses at the College of Physicians and Surgeons, the Mailman School of Public Health, the College of Dental Medicine, the School of Nursing, the biomedical departments of the Graduate School of Arts and Sciences, and allied research centers and institutions. Columbia University Medical Center is home to the largest medical research enterprise in New York City and State and one of the largest faculty medical practices in the Northeast. For more information, visit cumc.columbia.edu or columbiadoctors.org.

For more information, please click here

Contacts:
Karin Eskenazi

212-342-0508

Copyright © Columbia University Medical Center

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Quantum optics allows us to abandon expensive lasers in spectroscopy: Lomonosov Moscow State University scientists have invented a new method of spectroscopy November 21st, 2017

Nano-watch has steady hands November 21st, 2017

Nano Global, Arm Collaborate on Artificial Intelligence Chip to Drive Health Revolution by Capturing and Analyzing Molecular Data in Real Time November 21st, 2017

Nanoparticles could allow for faster, better medicine: Exposure of nanoparticles in the body allows for more effective delivery November 20th, 2017

Govt.-Legislation/Regulation/Funding/Policy

EC Project Aims at Creating and Commercializing Cyber-Physical-System Solutions November 14th, 2017

Nanobiotix presented new clinical and pre-clinical data confirming NBTXR3’s significant potential role in Immuno-Oncology at SITC Annual Meeting November 14th, 2017

Leti Joins DARPA-Funded Project to Develop Implantable Device for Restoring Vision November 9th, 2017

Nanoshells could deliver more chemo with fewer side effects: In vitro study verifies method for remotely triggering release of cancer drugs November 8th, 2017

Molecular Machines

How to draw electricity from the bloodstream: A one-dimensional fluidic nanogenerator with a high power-conversion efficiency September 11th, 2017

First 3-D observation of nanomachines working inside cells: Researchers headed by IRB Barcelona combine genetic engineering, super-resolution microscopy and biocomputation to allow them to see in 3-D the protein machinery inside living cells January 27th, 2017

Micro-bubbles make big impact: Research team develops new ultrasound-powered actuator to develop micro robot November 25th, 2016

Scientists come up with light-driven motors to power nanorobots of the future: Researchers from Russia and Ukraine propose a nanosized motor controlled by a laser with potential applications across the natural sciences and medicine November 11th, 2016

Molecular Nanotechnology

Spinning strands hint at folding dynamics: Rice University lab uses magnetic beads to model microscopic proteins, polymers October 17th, 2017

Assembly of nanoparticles proceeds like a zipper: Viruses and nanoparticles can be assembled into processable superlattice wires according to scientists from Aalto University Finland September 25th, 2017

First 3-D observation of nanomachines working inside cells: Researchers headed by IRB Barcelona combine genetic engineering, super-resolution microscopy and biocomputation to allow them to see in 3-D the protein machinery inside living cells January 27th, 2017

Captured on video: DNA nanotubes build a bridge between 2 molecular posts: Research may lead to new lines of direct communication with cells January 9th, 2017

Nanomedicine

Nanoparticles could allow for faster, better medicine: Exposure of nanoparticles in the body allows for more effective delivery November 20th, 2017

Nanobiotix presented new clinical and pre-clinical data confirming NBTXR3’s significant potential role in Immuno-Oncology at SITC Annual Meeting November 14th, 2017

Arrowhead to Present at 29th Annual Piper Jaffray Healthcare Conference November 14th, 2017

A new way to mix oil and water: Condensation-based method developed at MIT could create stable nanoscale emulsions November 8th, 2017

Discoveries

Quantum optics allows us to abandon expensive lasers in spectroscopy: Lomonosov Moscow State University scientists have invented a new method of spectroscopy November 21st, 2017

Nano-watch has steady hands November 21st, 2017

Nanoparticles could allow for faster, better medicine: Exposure of nanoparticles in the body allows for more effective delivery November 20th, 2017

ICN2 researchers compute unprecedented values for spin lifetime anisotropy in graphene November 17th, 2017

Announcements

Quantum optics allows us to abandon expensive lasers in spectroscopy: Lomonosov Moscow State University scientists have invented a new method of spectroscopy November 21st, 2017

Nano-watch has steady hands November 21st, 2017

Nano Global, Arm Collaborate on Artificial Intelligence Chip to Drive Health Revolution by Capturing and Analyzing Molecular Data in Real Time November 21st, 2017

Nanoparticles could allow for faster, better medicine: Exposure of nanoparticles in the body allows for more effective delivery November 20th, 2017

Research partnerships

Nano Global, Arm Collaborate on Artificial Intelligence Chip to Drive Health Revolution by Capturing and Analyzing Molecular Data in Real Time November 21st, 2017

EC Project Aims at Creating and Commercializing Cyber-Physical-System Solutions November 14th, 2017

Leti Joins DARPA-Funded Project to Develop Implantable Device for Restoring Vision November 9th, 2017

Nanoshells could deliver more chemo with fewer side effects: In vitro study verifies method for remotely triggering release of cancer drugs November 8th, 2017

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project