Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > Novel beams made of twisted atoms: Scientists can now theoretically construct atomic beams of a particular kind

Abstract:
Physicists have, for the first time, now built a theoretical construct of beams made of twisted atoms. These findings by Armen Hayrapetyan and colleagues at Ruprecht-Karls-University Heidelberg in Germany are about to be published in EPJ D. These so-called atomic Bessel beams can, in principle, have potential applications in quantum communication as well as in atomic and nuclear processes.

Novel beams made of twisted atoms: Scientists can now theoretically construct atomic beams of a particular kind

Heidelberg, Germany | Posted on August 7th, 2013

The concept for twisted atom beams stems from a similar approach with twisted photon beams, which are currently used as optical tweezers, for instance. It was later extended to twisted electron beams, which are used to improve the magnetic mapping of biological specimens and magnetic materials by means of twisted electron microscopy.

The authors focused on a beam made of twisted two-level atoms, which are driven by a laser field. They created a theoretical construct by using an equation, referred to as the non-relativistic Schrödinger equation, for atoms which are moving much slower than the speed of light. Hayrapetyan and colleagues solved this equation by taking into account the propagation directions of both the atomic and laser beams. By superimposing a multitude of plane waves with well-defined amplitudes, they produced Bessel beams for two-level atoms that resonantly interact with the laser field.

The authors confirmed that their atomic beams fulfilled the two main characteristics of Bessel beams. First, they showed that these beams carry a non-zero orbital angular momentum, as reflected by a rotation of the beam's wave front around the propagation axis in a corkscrew-like manner. Second, by taking a snapshot of the atomic beam intensity they demonstrated that these beams do not spread along the propagation axis. Moreover, they were able to control the profile of laser-driven atomic Bessel beams by tuning the parameters of both the atomic and laser beams.

####

For more information, please click here

Contacts:
Sophia Grein

49-622-148-78414

Copyright © Springer

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

Reference

Related News Press

News and information

Carbon nanotube optics poised to provide pathway to optical-based quantum cryptography and quantum computing: Researchers are exploring enhanced potential of carbon nanotubes for unique applications June 18th, 2018

Camouflaged nanoparticles used to deliver killer protein to cancer June 17th, 2018

Squeezing light at the nanoscale: Ultra-confined light could detect harmful molecules June 17th, 2018

Physicists devise method to reveal how light affects materials: The new method adds to the understanding of the fundamental laws governing the interaction of electrons and light June 15th, 2018

Physics

Evidence for a new property of quantum matter revealed: Electrical dipole activity detected in a quantum material unlike any other tested June 11th, 2018

Theory gives free rein to superconductivity at room temperature May 28th, 2018

Scientists Pinpoint Energy Flowing Through Vibrations in Superconducting Crystals: Interactions between electrons and the atomic structure of high-temperature superconductors impacted by elusive and powerful vibrations May 4th, 2018

New qubit now works without breaks: A universal design for superconducting qubits has been created April 19th, 2018

Discoveries

Carbon nanotube optics poised to provide pathway to optical-based quantum cryptography and quantum computing: Researchers are exploring enhanced potential of carbon nanotubes for unique applications June 18th, 2018

Camouflaged nanoparticles used to deliver killer protein to cancer June 17th, 2018

Squeezing light at the nanoscale: Ultra-confined light could detect harmful molecules June 17th, 2018

Physicists devise method to reveal how light affects materials: The new method adds to the understanding of the fundamental laws governing the interaction of electrons and light June 15th, 2018

Announcements

Carbon nanotube optics poised to provide pathway to optical-based quantum cryptography and quantum computing: Researchers are exploring enhanced potential of carbon nanotubes for unique applications June 18th, 2018

Camouflaged nanoparticles used to deliver killer protein to cancer June 17th, 2018

Squeezing light at the nanoscale: Ultra-confined light could detect harmful molecules June 17th, 2018

Physicists devise method to reveal how light affects materials: The new method adds to the understanding of the fundamental laws governing the interaction of electrons and light June 15th, 2018

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers

Carbon nanotube optics poised to provide pathway to optical-based quantum cryptography and quantum computing: Researchers are exploring enhanced potential of carbon nanotubes for unique applications June 18th, 2018

Camouflaged nanoparticles used to deliver killer protein to cancer June 17th, 2018

Squeezing light at the nanoscale: Ultra-confined light could detect harmful molecules June 17th, 2018

Physicists devise method to reveal how light affects materials: The new method adds to the understanding of the fundamental laws governing the interaction of electrons and light June 15th, 2018

Tools

Nanometrics Updates Time of Webcast at Stifel 2018 Cross Sector Insight Conference June 12th, 2018

Nano-saturn: Supramolecular complex formation: Anthracene macrocycle and C60 fullerene June 8th, 2018

Detecting the birth and death of a phonon June 7th, 2018

Scientists use photonic chip to make virtual movies of molecular motion June 6th, 2018

Photonics/Optics/Lasers

Carbon nanotube optics poised to provide pathway to optical-based quantum cryptography and quantum computing: Researchers are exploring enhanced potential of carbon nanotubes for unique applications June 18th, 2018

Squeezing light at the nanoscale: Ultra-confined light could detect harmful molecules June 17th, 2018

New optical sensor can determine if molecules are left or right 'handed' June 13th, 2018

Leti Presenting Strategic Vision and Hosting a Workshop at SEMICON West: “From Electrons to Photons” Leti Workshop and CEO Media Briefing Set for Tuesday, July 10 in W Hotel, San Francisco June 12th, 2018

Quantum nanoscience

Carbon nanotube optics poised to provide pathway to optical-based quantum cryptography and quantum computing: Researchers are exploring enhanced potential of carbon nanotubes for unique applications June 18th, 2018

Making quantum puddles: Physicists discover how to create the thinnest liquid films ever June 13th, 2018

Detecting the birth and death of a phonon June 7th, 2018

Quantum Interference May Be Key to Smaller Insulators: Breakthrough could jumpstart further miniaturization of transistors June 6th, 2018

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project