Nanotechnology Now

Our NanoNews Digest Sponsors


Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > Gold 'nanoprobes' hold the key to treating killer diseases

This image shows Dr. Sumeet Mahajan at work in the lab.

Credit: The University of Southampton
This image shows Dr. Sumeet Mahajan at work in the lab.

Credit: The University of Southampton

Abstract:
Researchers at the University of Southampton, in collaboration with colleagues at the University of Cambridge, have developed a technique to help treat fatal diseases more effectively. Dr Sumeet Mahajan and his group at the Institute for Life Sciences at Southampton are using gold nanoprobes to identify different types of cells, so that they can use the right ones in stem cell therapies.

Gold 'nanoprobes' hold the key to treating killer diseases

Southampton, UK | Posted on August 7th, 2013

Stem cell therapy is in its infancy, but has the potential to change the way we treat cancer and other life-threatening diseases, by replacing damaged or diseased cells with healthy ones. One of the key limitations of stem cell therapy is identifying the right cells to use for different therapies. This fundamental problem with the treatment is being tackled by this new research.

Dr Mahajan, Senior Chemistry Lecturer in Life Science Interface, says: "Stem cells could hold the key to tackling many diseases. They develop into all the various kinds of cells needed in the body - blood, nerves and organs - but it is almost impossible to tell them apart during their initial development without complex techniques, even with the most advanced microscopes. Up to now, scientists have used intrusive fluorescent markers to tag molecules and track each cell, a process which can render them useless for therapeutic purposes anyway. By using a technique discovered at Southampton in the 1970s, known as Surface Enhanced Raman Spectroscopy (SERS), we have been able to look at adult stem cells on a molecular scale to distinguish one from another, meaning we can still use the cells for therapeutic purposes."

The team who discovered SERS in the 1970s found that by roughening a metal surface upon which they had placed molecules to be examined, they could increase the signal by which they could detect these molecules, by a million times. This allowed them to detect molecules in far smaller quantities than ever before. SERS has been used in many different capacities around the world and across industries, but this new research marks the first time it has been used in the field of cell therapeutics. Dr Mahajan's research could mean that stem cell and other cell-based therapies could be advanced much further than the current most common uses, such as bone marrow transplants.

Dr Mahajan comments: "Scientists studying neurodegenerative diseases such as Parkinson's disease believe replenishing a patient's depleted dopamine-generating cells, may be an effective treatment. However, in order to avoid fatal complications, we must be sure we are using the right type of replacement cells, which the work we are doing at Southampton is enabling us to do. In addition, the technique can also allow us to see if drugs are working effectively in cells, and can also be used to diagnose diseases as well as treat them."

The results of Dr Mahajan's work, funded by the Engineering and Physical Sciences Research Council (EPSRC), have been published in the influential journal Nano Letters. He is collaborating with major pharmaceutical companies to further develop more effective drugs using this technique.

####

About University of Southampton
The University of Southampton is a leading UK teaching and research institution with a global reputation for leading-edge research and scholarship across a wide range of subjects in engineering, science, social sciences, health and humanities.

With over 23,000 students, around 5000 staff, and an annual turnover well in excess of £435 million, the University of Southampton is acknowledged as one of the country's top institutions for engineering, computer science and medicine. We combine academic excellence with an innovative and entrepreneurial approach to research, supporting a culture that engages and challenges students and staff in their pursuit of learning.

The University is also home to a number of world-leading research centres including the Institute of Sound and Vibration Research, the Optoelectronics Research Centre, the Institute for Life Sciences, the Web Science Trust and Doctoral training Centre, the Centre for the Developmental Origins of Health and Disease, the Southampton Statistical Sciences Research Institute and is a partner of the National Oceanography Centre at the Southampton waterfront campus.

About Engineering and Physical Sciences Research Council (EPSRC)

The Engineering and Physical Sciences Research Council (EPSRC) which is funding Dr Mahajan's research project, is the UK's main agency for funding research in engineering and the physical sciences. EPSRC invests around £800 million a year in research and postgraduate training, to help the nation handle the next generation of technological change.

For more information, please click here

Contacts:
Charlotte Woods
Media Relations
University of Southampton
Tel 023 8059 2128 or 07891210483

Follow us on Twitter: http://twitter.com/unisouthampton

Like us on Facebook: http://www.facebook.com/unisouthampton

Copyright © University of Southampton

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

The full paper can be found at this link:

Related News Press

News and information

Nanotechnology and math deliver two-in-one punch for cancer therapy resistance June 24th, 2016

Researchers discover new chemical sensing technique: Technique allows sharper detail -- and more information -- with near infrared light June 24th, 2016

GraphExeter illuminates bright new future for flexible lighting devices June 23rd, 2016

Soft decoupling of organic molecules on metal June 23rd, 2016

Videos/Movies

'On-the-fly' 3-D print system prints what you design, as you design it June 1st, 2016

Revealing the nature of magnetic interactions in manganese oxide: New technique for probing local magnetic interactions confirms 'superexchange' model that explains how the material gets its long-range magnetic order May 25th, 2016

Programmable materials find strength in molecular repetition May 23rd, 2016

Graphene makes rubber more rubbery May 23rd, 2016

Nanomedicine

Nanotechnology and math deliver two-in-one punch for cancer therapy resistance June 24th, 2016

Self-assembling icosahedral protein designed: Self-assembling icosahedral protein designed June 22nd, 2016

Stealth nanocapsules kill Chagas parasites in mouse models June 22nd, 2016

New nanoparticle technology developed to treat aggressive thyroid cancer: Platform designed to deliver nanotherapy effective in preclinical models of metastatic anaplastic thyroid cancer June 21st, 2016

Discoveries

Nanotechnology and math deliver two-in-one punch for cancer therapy resistance June 24th, 2016

Researchers discover new chemical sensing technique: Technique allows sharper detail -- and more information -- with near infrared light June 24th, 2016

GraphExeter illuminates bright new future for flexible lighting devices June 23rd, 2016

Soft decoupling of organic molecules on metal June 23rd, 2016

Announcements

Nanotechnology and math deliver two-in-one punch for cancer therapy resistance June 24th, 2016

Researchers discover new chemical sensing technique: Technique allows sharper detail -- and more information -- with near infrared light June 24th, 2016

GraphExeter illuminates bright new future for flexible lighting devices June 23rd, 2016

Soft decoupling of organic molecules on metal June 23rd, 2016

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers

Nanotechnology and math deliver two-in-one punch for cancer therapy resistance June 24th, 2016

Researchers discover new chemical sensing technique: Technique allows sharper detail -- and more information -- with near infrared light June 24th, 2016

Coexistence of superconductivity and charge density waves observed June 23rd, 2016

GraphExeter illuminates bright new future for flexible lighting devices June 23rd, 2016

Research partnerships

Soft decoupling of organic molecules on metal June 23rd, 2016

FEI and University of Liverpool Announce QEMSCAN Research Initiative: University of Liverpool will utilize FEIís QEMSCAN technology to gain a better insight into oil and gas reserves & potentially change the approach to evaluating them June 22nd, 2016

Tailored DNA shifts electrons into the 'fast lane': DNA nanowire improved by altering sequences June 22nd, 2016

French Research Team Helps Extend MRI Detection of Diseases & Lower Health-Care Costs: CEA, INSERM and G2ELab Brings Grenoble Regionís Expertise In Advanced Medicine & Magnetism Applications to H2020 IDentIFY Project June 21st, 2016

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







Car Brands
Buy website traffic