Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > Gold 'nanoprobes' hold the key to treating killer diseases

This image shows Dr. Sumeet Mahajan at work in the lab.

Credit: The University of Southampton
This image shows Dr. Sumeet Mahajan at work in the lab.

Credit: The University of Southampton

Abstract:
Researchers at the University of Southampton, in collaboration with colleagues at the University of Cambridge, have developed a technique to help treat fatal diseases more effectively. Dr Sumeet Mahajan and his group at the Institute for Life Sciences at Southampton are using gold nanoprobes to identify different types of cells, so that they can use the right ones in stem cell therapies.

Gold 'nanoprobes' hold the key to treating killer diseases

Southampton, UK | Posted on August 7th, 2013

Stem cell therapy is in its infancy, but has the potential to change the way we treat cancer and other life-threatening diseases, by replacing damaged or diseased cells with healthy ones. One of the key limitations of stem cell therapy is identifying the right cells to use for different therapies. This fundamental problem with the treatment is being tackled by this new research.

Dr Mahajan, Senior Chemistry Lecturer in Life Science Interface, says: "Stem cells could hold the key to tackling many diseases. They develop into all the various kinds of cells needed in the body - blood, nerves and organs - but it is almost impossible to tell them apart during their initial development without complex techniques, even with the most advanced microscopes. Up to now, scientists have used intrusive fluorescent markers to tag molecules and track each cell, a process which can render them useless for therapeutic purposes anyway. By using a technique discovered at Southampton in the 1970s, known as Surface Enhanced Raman Spectroscopy (SERS), we have been able to look at adult stem cells on a molecular scale to distinguish one from another, meaning we can still use the cells for therapeutic purposes."

The team who discovered SERS in the 1970s found that by roughening a metal surface upon which they had placed molecules to be examined, they could increase the signal by which they could detect these molecules, by a million times. This allowed them to detect molecules in far smaller quantities than ever before. SERS has been used in many different capacities around the world and across industries, but this new research marks the first time it has been used in the field of cell therapeutics. Dr Mahajan's research could mean that stem cell and other cell-based therapies could be advanced much further than the current most common uses, such as bone marrow transplants.

Dr Mahajan comments: "Scientists studying neurodegenerative diseases such as Parkinson's disease believe replenishing a patient's depleted dopamine-generating cells, may be an effective treatment. However, in order to avoid fatal complications, we must be sure we are using the right type of replacement cells, which the work we are doing at Southampton is enabling us to do. In addition, the technique can also allow us to see if drugs are working effectively in cells, and can also be used to diagnose diseases as well as treat them."

The results of Dr Mahajan's work, funded by the Engineering and Physical Sciences Research Council (EPSRC), have been published in the influential journal Nano Letters. He is collaborating with major pharmaceutical companies to further develop more effective drugs using this technique.

####

About University of Southampton
The University of Southampton is a leading UK teaching and research institution with a global reputation for leading-edge research and scholarship across a wide range of subjects in engineering, science, social sciences, health and humanities.

With over 23,000 students, around 5000 staff, and an annual turnover well in excess of £435 million, the University of Southampton is acknowledged as one of the country's top institutions for engineering, computer science and medicine. We combine academic excellence with an innovative and entrepreneurial approach to research, supporting a culture that engages and challenges students and staff in their pursuit of learning.

The University is also home to a number of world-leading research centres including the Institute of Sound and Vibration Research, the Optoelectronics Research Centre, the Institute for Life Sciences, the Web Science Trust and Doctoral training Centre, the Centre for the Developmental Origins of Health and Disease, the Southampton Statistical Sciences Research Institute and is a partner of the National Oceanography Centre at the Southampton waterfront campus.

About Engineering and Physical Sciences Research Council (EPSRC)

The Engineering and Physical Sciences Research Council (EPSRC) which is funding Dr Mahajan's research project, is the UK's main agency for funding research in engineering and the physical sciences. EPSRC invests around £800 million a year in research and postgraduate training, to help the nation handle the next generation of technological change.

For more information, please click here

Contacts:
Charlotte Woods
Media Relations
University of Southampton
Tel 023 8059 2128 or 07891210483

Follow us on Twitter: http://twitter.com/unisouthampton

Like us on Facebook: http://www.facebook.com/unisouthampton

Copyright © University of Southampton

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

The full paper can be found at this link:

Related News Press

News and information

Particle Works creates range of high performance quantum dots February 23rd, 2017

GLOBALFOUNDRIES Announces Availability of 45nm RF SOI to Advance 5G Mobile Communications: Optimized RF features deliver high-performance solutions for mmWave beam forming applications in 5G smartphones and base stations February 22nd, 2017

EmTech Asia breaks new barriers with potential applications of space exploration with NASA and MIT February 22nd, 2017

JPK selects compact tensile stage from Deben for their NanoWizard® AFM platform to broaden capabilities for materials characterisation February 22nd, 2017

Videos/Movies

Graphene foam gets big and tough: Rice University's nanotube-reinforced material can be shaped, is highly conductive February 13th, 2017

First ever blueprint unveiled to construct a large scale quantum computer February 3rd, 2017

The shape of melting in two dimensions: University of Michigan team uses Titan to explore fundamental phase transitions February 2nd, 2017

Metallic hydrogen, once theory, becomes reality: Harvard physicists succeed in creating 'the holy grail of high-pressure physics' January 28th, 2017

Nanomedicine

Nominations Invited for $250,000 Kabiller Prize in Nanoscience: Major international prize recognizes a visionary nanotechnology researcher February 20th, 2017

Good vibrations help reveal molecular details: Rice University scientists combine disciplines to pinpoint small structures in unlabeled molecules February 15th, 2017

In-cell molecular sieve from protein crystal February 14th, 2017

Cedars-Sinai, UCLA Scientists Use New ‘Blood Biopsies’ With Experimental Device to Speed Cancer Diagnosis and Predict Disease Spread: Leading-Edge Research Is Part of National Cancer Moonshot Initiative February 13th, 2017

Discoveries

Molecular phenomenon discovered by advanced NMR facility: Cutting edge technology has shown a molecule self-assembling into different forms when passing between solution state to solid state, and back again - a curious phenomenon in science - says research by the University of Wa February 22nd, 2017

Tiny nanoclusters could solve big problems for lithium-ion batteries February 21st, 2017

Oxford Instruments announces Dr Brad Ramshaw of Cornell University, as winner of the 2017 Lee Osheroff Richardson Science Prize February 20th, 2017

Breakthrough with a chain of gold atoms: In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport February 20th, 2017

Announcements

Particle Works creates range of high performance quantum dots February 23rd, 2017

GLOBALFOUNDRIES Announces Availability of 45nm RF SOI to Advance 5G Mobile Communications: Optimized RF features deliver high-performance solutions for mmWave beam forming applications in 5G smartphones and base stations February 22nd, 2017

EmTech Asia breaks new barriers with potential applications of space exploration with NASA and MIT February 22nd, 2017

JPK selects compact tensile stage from Deben for their NanoWizard® AFM platform to broaden capabilities for materials characterisation February 22nd, 2017

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers

Molecular phenomenon discovered by advanced NMR facility: Cutting edge technology has shown a molecule self-assembling into different forms when passing between solution state to solid state, and back again - a curious phenomenon in science - says research by the University of Wa February 22nd, 2017

Tiny nanoclusters could solve big problems for lithium-ion batteries February 21st, 2017

Breakthrough with a chain of gold atoms: In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport February 20th, 2017

'Lossless' metamaterial could boost efficiency of lasers and other light-based devices February 20th, 2017

Research partnerships

Molecular phenomenon discovered by advanced NMR facility: Cutting edge technology has shown a molecule self-assembling into different forms when passing between solution state to solid state, and back again - a curious phenomenon in science - says research by the University of Wa February 22nd, 2017

Graphene foam gets big and tough: Rice University's nanotube-reinforced material can be shaped, is highly conductive February 13th, 2017

Cedars-Sinai, UCLA Scientists Use New ‘Blood Biopsies’ With Experimental Device to Speed Cancer Diagnosis and Predict Disease Spread: Leading-Edge Research Is Part of National Cancer Moonshot Initiative February 13th, 2017

Highly sensitive gas sensors for volatile organic compound detection February 6th, 2017

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project