Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > A layer of tiny grains can slow sound waves: Layer of microscopic spheres offers new approach to controlling acoustic waves

Abstract:
In some ways, granular material — such as a pile of sand — can behave much like a crystal, with its close-packed grains mimicking the precise, orderly arrangement of crystalline atoms. Now researchers at MIT have pushed that similarity to a new limit, creating two-dimensional arrays of micrograins that can funnel acoustic waves, much as specially designed crystals can control the passage of light or other waves.

A layer of tiny grains can slow sound waves: Layer of microscopic spheres offers new approach to controlling acoustic waves

Cambridge, MA | Posted on August 6th, 2013

The researchers say the findings could lead to a new way of controlling frequencies in electronic devices such as cellphones, but with components that are only a fraction the size of those currently used for that function. On a larger scale, it could lead to new types of blast-shielding material for use in combat or by public-safety personnel or equipment.

A paper on the research appears in the journal Physical Review Letters, written by Nicholas Fang, the Brit and Alex d'Arbeloff Career Development Associate Professor in Engineering Design; Nicholas Boechler, a former MIT postdoc now at the University of Washington; and four co-authors.

Research on the properties of granular materials — collections of small grains, such as sand or tiny glass beads — has become "a rich and rapidly developing field," the researchers write. But most such research has focused on the properties of sand-sized particles, about a millimeter across, Fang says. The new work is the first to examine the very different properties of particles that are about one-thousandth that size, or one micrometer across, whose properties were expected to be "qualitatively different."

In their experiments, the team used a single layer of microspheres to guide and slow sound waves (known as surface acoustic waves, or SAWs) traveling across a surface, Fang says. The researchers used ideas they had previously applied in research on controlling light waves, he says, which involved the use of photonic crystals.

SAWs are widely used in electronic devices such as cellphones, Fang says, "like clocks that give a single frequency signal … to synchronize different chips or parts of a chip." But with the new system, "we can shrink the device size" needed for processing SAWs, he says. Present-day oscillators for SAWs are relatively bulky, Fang says, but the use of a 2-D granular material to guide and slow the waves could allow such devices to be only one-sixth their present size, he estimates.

What's more, the 2-D nature of this system could allow it to be fabricated right on a chip, along with the necessary control circuits and other components. Today's oscillators, by contrast, are typically separate devices placed next to the chip array that controls them, Fang says — so in cases where small size is important, the new work has the potential to allow for even smaller electronic devices.

The system could potentially also be used to develop new kinds of sensors, such as microbalances capable of measuring tiny changes in weight, he says.

The same principle could also lead to a new kind of blast-shielding material, Fang suggests. If acoustic waves — such as the intense shock waves from an explosion — hit the two-dimensional material at a right angle, much of their energy can be converted to surface waves that travel sideways out of the material. A sandwich of many layers of such material might provide substantial protection from a blast in a lightweight, wearable form, though such applications will likely require substantial further research, Fang says.

John Page, a professor of physics and astronomy at the University of Manitoba, says this is "a high-quality piece of research. … I am sure that their findings will be widely accepted."

In addition to Fang and Boechler, the research team included graduate students Jeff Eliason and Anshuman Kumar; research fellow Alex Maznev; and professor of chemistry Keith Nelson. The work was supported by the Defense Threat Reduction Agency and the National Science Foundation.

Written by David Chandler, MIT News Office

####

For more information, please click here

Contacts:
Kimberly Allen
MIT News Office

617.253.2702

Copyright © MIT

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

Paper: "Interaction of a Contact Resonance of Microspheres with Surface Acoustic Waves":

Related News Press

News and information

A new product to help combat mouldy walls, thanks to technology developed at the ICN2 December 14th, 2017

Sandia researchers make solid ground toward better lithium-ion battery interfaces: Reducing the traffic jam in batteries December 13th, 2017

Perking up and crimping the 'bristles' of polyelectrolyte brushes December 13th, 2017

Columbia engineers create artificial graphene in a nanofabricated semiconductor structure: Researchers are the first to observe the electronic structure of graphene in an engineered semiconductor; finding could lead to progress in advanced optoelectronics and data processing December 13th, 2017

Leti to Demo Wristband with Embedded Sensors to Diagnose Sleep Apnea: APNEAband, Which Will Be Demonstrated at CES 2018, Also Monitors Mountain Sickness, Dehydration, Dialysis Treatment Response and Epileptic Seizures December 12th, 2017

Physics

Columbia engineers create artificial graphene in a nanofabricated semiconductor structure: Researchers are the first to observe the electronic structure of graphene in an engineered semiconductor; finding could lead to progress in advanced optoelectronics and data processing December 13th, 2017

Leti Develops World’s First Micro-Coolers for CERN Particle Detectors: Leti Design, Fabrication and Packaging Expertise Extends to Very Large Scientific Instruments December 11th, 2017

Inorganic-organic halide perovskites for new photovoltaic technology November 6th, 2017

Govt.-Legislation/Regulation/Funding/Policy

Sandia researchers make solid ground toward better lithium-ion battery interfaces: Reducing the traffic jam in batteries December 13th, 2017

Perking up and crimping the 'bristles' of polyelectrolyte brushes December 13th, 2017

Columbia engineers create artificial graphene in a nanofabricated semiconductor structure: Researchers are the first to observe the electronic structure of graphene in an engineered semiconductor; finding could lead to progress in advanced optoelectronics and data processing December 13th, 2017

Wheat gets boost from purified nanotubes: Rice University toxicity study shows plant growth enhanced by -- but only by -- purified nanotubes December 6th, 2017

Chip Technology

Columbia engineers create artificial graphene in a nanofabricated semiconductor structure: Researchers are the first to observe the electronic structure of graphene in an engineered semiconductor; finding could lead to progress in advanced optoelectronics and data processing December 13th, 2017

UCLA chemists synthesize narrow ribbons of graphene using only light and heat: Tiny structures could be next-generation solution for smaller electronic devices December 8th, 2017

Device makes power conversion more efficient: New design could dramatically cut energy waste in electric vehicles, data centers, and the power grid December 8th, 2017

Leti Integrates Hybrid III-V Silicon Lasers on 200mm Wafers with Standard CMOS Process December 6th, 2017

Discoveries

Sandia researchers make solid ground toward better lithium-ion battery interfaces: Reducing the traffic jam in batteries December 13th, 2017

Perking up and crimping the 'bristles' of polyelectrolyte brushes December 13th, 2017

Columbia engineers create artificial graphene in a nanofabricated semiconductor structure: Researchers are the first to observe the electronic structure of graphene in an engineered semiconductor; finding could lead to progress in advanced optoelectronics and data processing December 13th, 2017

Untangling DNA: Researchers filter the entropy out of nanopore measurements December 8th, 2017

Announcements

A new product to help combat mouldy walls, thanks to technology developed at the ICN2 December 14th, 2017

Sandia researchers make solid ground toward better lithium-ion battery interfaces: Reducing the traffic jam in batteries December 13th, 2017

Perking up and crimping the 'bristles' of polyelectrolyte brushes December 13th, 2017

Columbia engineers create artificial graphene in a nanofabricated semiconductor structure: Researchers are the first to observe the electronic structure of graphene in an engineered semiconductor; finding could lead to progress in advanced optoelectronics and data processing December 13th, 2017

Military

Math gets real in strong, lightweight structures: Rice University researchers use 3-D printers to turn century-old theory into complex schwarzites November 16th, 2017

Promising sensors for submarines, mines and spacecraft: MSU scientists are developing nanostructured gas sensors that would work at room temperature November 10th, 2017

Leti Joins DARPA-Funded Project to Develop Implantable Device for Restoring Vision November 9th, 2017

Nanoshells could deliver more chemo with fewer side effects: In vitro study verifies method for remotely triggering release of cancer drugs November 8th, 2017

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project