Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > Quantum communication controlled by resonance in 'artificial atoms'

Professor Charles Marcus, University of Copenhagen, is shown in the Center for Quantum Devices. The experiments are carried out at ultra low temperatures close to absolute zero, which is minus 273 degrees C.

Credit: Ola Jakup Joensen, Niels Bohr Institute
Professor Charles Marcus, University of Copenhagen, is shown in the Center for Quantum Devices. The experiments are carried out at ultra low temperatures close to absolute zero, which is minus 273 degrees C.

Credit: Ola Jakup Joensen, Niels Bohr Institute

Abstract:
Researchers at the Niels Bohr Institute, together with colleagues in the US and Australia, have developed a method to control a quantum bit for electronic quantum communication in a series of quantum dots, which behave like artificial atoms in the solid state. The results have been published in the scientific journal Physical Review Letters.

Quantum communication controlled by resonance in 'artificial atoms'

Copenhagen, Denmark | Posted on August 6th, 2013

In a conventional computer, information is made up of bits, comprised of 0's and 1's. In a quantum computer the 0 and 1 states can simultaneously exist, allowing a kind of parallel computation in which a large number of computational states are acted upon by the machine at the same time. This can make a quantum computer exponentially faster than a conventional computer. The problem with the quantum world, however, is that you cannot allow these states to be measured, or all of the quantum magic disappears.

"We have developed a new way of controlling the electrons so that the quantum state can be controlled without measurement, using resonances familiar in atomic physics, now applied to these artificial atoms," explains Professor Charles Marcus, director of the Center for Quantum Devices at the Niels Bohr Institute at the University of Copenhagen.

He explains that they are combining classical solid-state physics on a nanometer scale with resonance techniques of atomic physics. In a semiconducting material (GaAs) there are free electrons that move within the material structure. The information is stored in the spin of the electrons which can turn up or down. But the electrons and their spin must be controlled.

Captures electrons and controls them

"We capture the electrons in 'boxes'. Each box consist of a quantum dot, which is an artificial atom. The quantum dots are embedded in the semiconductor and each quantum dot can capture one electron. There needs to be three quantum dots next to each other using nanometer-scale electrostatic metal gates. When we open contact between the 'boxes' the electrons can sense each others' presence. The three spins must coordinate their orientations because it cost extra energy to put electrons with the same spin into the same box. To lower their energy, they not only spread out among the three boxes, but they orient their spins to further lower their energy. The three boxes together form a single entity - a qubit or quantum bit," explains Marcus.

An electrical signal is now sent from outside and by rapidly opening the boxes the system begins to swing in dynamic vibrations. The researchers can use this to change the quantum state of the electrons. "By combining three electrons in a triple quantum dot and oscillating an applied electric field at the frequency that separates adjacent energy levels, we can thus control the spins of the electrons without measuring them," explains Charles Marcus.

Quantum computers for extreme applications

First, the technique itself was discovered. The next step is not just a single sequence with three quantum dots, but several sequences. Each sequence forms one qubit and now a series of qubits need to talk to each other. This could be realised by a quantum computer with more bits.

"The potential of a quantum computer is that it will be able to perform multiple calculations at once. In that way it will be much faster than conventional computers and will be able to solve tasks that cannot currently be solved, because it simply takes too long," says Charles Marcus.

Quantum computers are not expected to be something everyone will own, but rather an advanced set of tools for researchers who need to make extreme calculations.

####

For more information, please click here

Contacts:
Charles Marcus, Professor
Director of Center for Quantum Devices
Niels Bohr Institute
University of Copenhagen
+45 2034-1181


Gertie Skaarup

45-35-32-53-20
University of Copenhagen - Niels Bohr Institute

Copyright © University of Copenhagen - Niels Bohr Institute

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Creating a color printer that uses a colorless, non-toxic ink inspired by nature February 11th, 2016

SLAC X-ray laser turns crystal imperfections into better images of important biomolecules: New method could remove major obstacles to studying structures of complex biological machines February 11th, 2016

Nanoparticle reduces targeted cancer drug's toxicity February 11th, 2016

Cima NanoTech Debuts Large Interactive Touch Screens with European Customers at ISE 2016: For the first time in Europe, Cima NanoTech’s wide range of high performance, projected capacitive touch modules are showcased February 11th, 2016

Physics

Electron's 1-D metallic surface state observed: A step for the prediction of electronic properties of extremely-fine metal nanowires in next-generation semiconductors February 9th, 2016

A fast solidification process makes material crackle February 8th, 2016

Canadian physicists discover new properties of superconductivity February 8th, 2016

The iron stepping stones to better wearable tech without semiconductors February 8th, 2016

Discoveries

Creating a color printer that uses a colorless, non-toxic ink inspired by nature February 11th, 2016

SLAC X-ray laser turns crystal imperfections into better images of important biomolecules: New method could remove major obstacles to studying structures of complex biological machines February 11th, 2016

Nanoparticle reduces targeted cancer drug's toxicity February 11th, 2016

Chemical cages: New technique advances synthetic biology February 10th, 2016

Announcements

Creating a color printer that uses a colorless, non-toxic ink inspired by nature February 11th, 2016

SLAC X-ray laser turns crystal imperfections into better images of important biomolecules: New method could remove major obstacles to studying structures of complex biological machines February 11th, 2016

Nanoparticle reduces targeted cancer drug's toxicity February 11th, 2016

Cima NanoTech Debuts Large Interactive Touch Screens with European Customers at ISE 2016: For the first time in Europe, Cima NanoTech’s wide range of high performance, projected capacitive touch modules are showcased February 11th, 2016

Quantum Dots/Rods

Nanoscale cavity strongly links quantum particles: Single photons can quickly modify individual electrons embedded in a semiconductor chip and vice versa February 8th, 2016

The iron stepping stones to better wearable tech without semiconductors February 8th, 2016

QD Vision Named to the 2015 Global Cleantech 100 Under the Radar List: Quantum Dot Leader Recognized for Clean Technology Innovation January 26th, 2016

Light-activated nanoparticles prove effective against antibiotic-resistant 'superbugs' January 19th, 2016

Quantum nanoscience

Nanoscale cavity strongly links quantum particles: Single photons can quickly modify individual electrons embedded in a semiconductor chip and vice versa February 8th, 2016

The iron stepping stones to better wearable tech without semiconductors February 8th, 2016

Spin dynamics in an atomically thin semi-conductor February 1st, 2016

New record in nanoelectronics at ultralow temperatures January 28th, 2016

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







Car Brands
Buy website traffic