Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Interface Superconductivity Withstands Variations in Atomic Configuration: Brookhaven Lab scientists discover that critical temperature remains constant across interface superconductors regardless of electron doping levels, challenging leading theories

Click on the image to download a high-resolution version. Collaborating scientists stand with the atomic layer-by-layer molecular beam epitaxy system (ALL-MBE) used to synthesize the more than 800 differently doped samples used in the new study. Front row, from left: Yujie Sun, Anthony Bollinger; center: Jie Wu; back, from left: Ivan Bozovic, Zoran Radovic (visiting scientist from Serbia's Belgrade University).
Click on the image to download a high-resolution version. Collaborating scientists stand with the atomic layer-by-layer molecular beam epitaxy system (ALL-MBE) used to synthesize the more than 800 differently doped samples used in the new study. Front row, from left: Yujie Sun, Anthony Bollinger; center: Jie Wu; back, from left: Ivan Bozovic, Zoran Radovic (visiting scientist from Serbia's Belgrade University).

Abstract:
Superconductors carry electricity with zero loss, but that perfect performance only occurs at temperatures hundreds of degrees below zero. Warmed beyond those frigid conditions, the materials cross a critical temperature threshold and the superconductivity breaks down. But high-temperature superconductors (HTS)-warmer, but still subzero-may have untapped potential because their underlying mechanism remains a mystery. Unlocking that unknown HTS source and engineering new superconductor configurations could drive that critical temperature high enough to revolutionize energy technology.

Interface Superconductivity Withstands Variations in Atomic Configuration: Brookhaven Lab scientists discover that critical temperature remains constant across interface superconductors regardless of electron doping levels, challenging leading theories

Upton, NY | Posted on August 5th, 2013

Now, scientists at the U.S. Department of Energy's (DOE) Brookhaven National Laboratory have discovered an unexpected and anomalous pattern in the behavior of one high-performing class of HTS materials. In the new frontier of interface physics, two non-conducting materials can be layered to produce HTS behavior, with tantalizing and mystifying results. Testing a sample set of unprecedented size-more than 800 distinct, custom-made materials-the researchers found that the critical temperature for superconductivity remained constant across a wide range of atomic compositions.

"Theory predicted that the critical temperature in these interface samples would depend strongly on the electron content, but we saw no such dependence," said Brookhaven physicist Ivan Bozovic, lead investigator on the new study published online August 4, 2013, in the journal Nature Materials. "We are exploring uncharted territory with unprecedented precision."

Interface Emergence

Scientists can tweak the average number of electrons present in HTS films-called the doping level or carrier density-to optimize performance and explore the poorly understood phenomenon. The lanthanum, strontium, copper, and oxygen (LSCO) films used in this study change based on that doping level, transforming into under-doped insulator, a well doped superconductor, or an over-doped and non-superconducting metal. Much HTS research is dedicated to exploring the "just right" regime in the middle, but the ends of the spectrum hold considerable potential.

"Years ago, we discovered something truly remarkable at the interface between an LSCO insulator and an over-doped metal," Bozovic said. "An unpredicted superconductivity emerged with a significantly enhanced critical temperature of more than 50 Kelvin."

That temperature may be frosty (-370 degrees Fahrenheit), but the interface threshold is downright balmy compared to traditional superconductors and even 25 percent warmer than single-phase LSCO materials. Faced with this promising puzzle, the Brookhaven Lab team set out to test the many possible atomic configurations of LSCO interface superconductors.

Dope Elements

To map the relatively simple phase diagram of water-its journey from solid ice to gaseous vapor-the temperature must be incrementally increased. Leaping up by 10 degrees, for example, would leave considerable gaps and reveal very little about the exact phase transitions or how to harness them.

"To pinpoint the parameters of interface HTS, which is characterized by quantum phase transitions rather than thermal, we tuned the carrier density," Bozovic said. "So unlike the simple application of heat, we had to alter the atomic composition of our samples."

Without confirmed theories on interface superconductivity to guide design, each electron configuration must be synthesized and directly tested. And to make matters even more challenging, the Brookhaven collaboration needed hundreds of these precisely tailored LSCO samples.

Critical Pixels

"When studying complex materials, one needs robust statistics to identify trends-finding what is ubiquitous or intrinsic and filtering out the random and irrelevant," Bozovic said. "So we fabricated more than 800 samples, each one almost atomically perfect, with subtle changes in the doping level."

To accomplish this feat, the scientists used a custom-designed atomic layer-by-layer molecular beam epitaxy system (ALL-MBE) at Brookhaven Lab. The MBE group, which Bozovic leads, grew the thin LSCO films inside strictly controlled vacuum chambers. They then lithographically patterned the films-a bit like micrometer-scale printing-into an array of distinct pixels, each with a slightly different chemical composition. The researchers then measured the flow of current against the related doping levels in each pixel to chart the rise and fall of HTS.

"Our technique accelerated the sample testing process by 30 times or more," Bozovic said. "More importantly, we could vary the doping level in steps one hundred times smaller than in standard methods."

To the surprise of the Brookhaven scientists, the critical temperature for interface superconductivity in each of the 800 samples stayed constant at about 40 Kelvin. The doping level, even at the optimum levels predicted by theoretical models, did not appear to shift the electro-chemical potential of the HTS materials.

"The results pose a new challenge to HTS theories," Bozovic said. "This study exemplifies the rich puzzle of interface physics and the other new discoveries that can be made through advanced experimentation."

Additional collaborators on the research include Jie Wu, Oshiri Pelleg, Anthony Bollinger, Yujie Sun, all of Brookhaven Lab, Mihajlo Vanevic and Zoran Radovic of University of Belgrade, Serbia, and Gregory Boebinger of the National High Magnetic Field Laboratory.

The research was funded by the DOE's Office of Science, the Serbian Ministry of Science and Education, and the National Science Foundation.

DOE's Office of Science is the single largest supporter of basic research in the physical sciences in the United States, and is working to address some of the most pressing challenges of our time. For more information, please visit science.energy.gov.

####

About Brookhaven National Laboratory
One of ten national laboratories overseen and primarily funded by the Office of Science of the U.S. Department of Energy (DOE), Brookhaven National Laboratory conducts research in the physical, biomedical, and environmental sciences, as well as in energy technologies and national security. Brookhaven Lab also builds and operates major scientific facilities available to university, industry and government researchers. Brookhaven is operated and managed for DOE's Office of Science by Brookhaven Science Associates, a limited-liability company founded by the Research Foundation for the State University of New York on behalf of Stony Brook University, the largest academic user of Laboratory facilities, and Battelle, a nonprofit, applied science and technology organization.

Visit Brookhaven Lab's electronic newsroom for links, news archives, graphics, and more at www.bnl.gov/newsroom, follow Brookhaven Lab on Twitter, twitter.com/BrookhavenLab, or find us on Facebook, www.facebook.com/BrookhavenLab/.

For more information, please click here

Contacts:
Justin Eure
(631) 344-2347

or
Peter Genzer
(631) 344-3174

Copyright © Brookhaven National Laboratory

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

Scientific paper: "Anomalous independence of interface superconductivity on carrier density"

Related News Press

News and information

Simulating magnetization in a Heisenberg quantum spin chain April 5th, 2024

NRL charters Navy’s quantum inertial navigation path to reduce drift April 5th, 2024

Innovative sensing platform unlocks ultrahigh sensitivity in conventional sensors: Lan Yang and her team have developed new plug-and-play hardware to dramatically enhance the sensitivity of optical sensors April 5th, 2024

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

Superconductivity

Optically trapped quantum droplets of light can bind together to form macroscopic complexes March 8th, 2024

'Sudden death' of quantum fluctuations defies current theories of superconductivity: Study challenges the conventional wisdom of superconducting quantum transitions January 12th, 2024

Laboratories

A battery’s hopping ions remember where they’ve been: Seen in atomic detail, the seemingly smooth flow of ions through a battery’s electrolyte is surprisingly complicated February 16th, 2024

NRL discovers two-dimensional waveguides February 16th, 2024

Catalytic combo converts CO2 to solid carbon nanofibers: Tandem electrocatalytic-thermocatalytic conversion could help offset emissions of potent greenhouse gas by locking carbon away in a useful material January 12th, 2024

Govt.-Legislation/Regulation/Funding/Policy

NRL charters Navy’s quantum inertial navigation path to reduce drift April 5th, 2024

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

Chemical reactions can scramble quantum information as well as black holes April 5th, 2024

The Access to Advanced Health Institute receives up to $12.7 million to develop novel nanoalum adjuvant formulation for better protection against tuberculosis and pandemic influenza March 8th, 2024

Discoveries

A simple, inexpensive way to make carbon atoms bind together: A Scripps Research team uncovers a cost-effective method for producing quaternary carbon molecules, which are critical for drug development April 5th, 2024

Chemical reactions can scramble quantum information as well as black holes April 5th, 2024

New micromaterial releases nanoparticles that selectively destroy cancer cells April 5th, 2024

Utilizing palladium for addressing contact issues of buried oxide thin film transistors April 5th, 2024

Announcements

NRL charters Navy’s quantum inertial navigation path to reduce drift April 5th, 2024

Innovative sensing platform unlocks ultrahigh sensitivity in conventional sensors: Lan Yang and her team have developed new plug-and-play hardware to dramatically enhance the sensitivity of optical sensors April 5th, 2024

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

A simple, inexpensive way to make carbon atoms bind together: A Scripps Research team uncovers a cost-effective method for producing quaternary carbon molecules, which are critical for drug development April 5th, 2024

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters

Simulating magnetization in a Heisenberg quantum spin chain April 5th, 2024

Innovative sensing platform unlocks ultrahigh sensitivity in conventional sensors: Lan Yang and her team have developed new plug-and-play hardware to dramatically enhance the sensitivity of optical sensors April 5th, 2024

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

A simple, inexpensive way to make carbon atoms bind together: A Scripps Research team uncovers a cost-effective method for producing quaternary carbon molecules, which are critical for drug development April 5th, 2024

Research partnerships

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

Researchers’ approach may protect quantum computers from attacks March 8th, 2024

How surface roughness influences the adhesion of soft materials: Research team discovers universal mechanism that leads to adhesion hysteresis in soft materials March 8th, 2024

'Sudden death' of quantum fluctuations defies current theories of superconductivity: Study challenges the conventional wisdom of superconducting quantum transitions January 12th, 2024

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project