Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > Scientists Discover Hidden Magnetic Waves in High-Temperature Superconductors: Advanced x-ray technique reveals surprising quantum excitations that persist through materials with or without superconductivity

In this rendering, never-before-seen magnetic excitations ripple through a high-temperature superconductor, revealed for the first time by the Resonant Inelastic X-ray Scattering technique. By measuring the precise energy change of beams of incident x-rays (blue arrow) as they struck these quantum ripples and bounced off (red arrow), scientists discovered excitations present throughout the entire LSCO phase diagram.
In this rendering, never-before-seen magnetic excitations ripple through a high-temperature superconductor, revealed for the first time by the Resonant Inelastic X-ray Scattering technique. By measuring the precise energy change of beams of incident x-rays (blue arrow) as they struck these quantum ripples and bounced off (red arrow), scientists discovered excitations present throughout the entire LSCO phase diagram.

Abstract:
Intrinsic inefficiencies plague current systems for the generation and delivery of electricity, with significant energy lost in transit. High-temperature superconductors (HTS)-uniquely capable of transmitting electricity with zero loss when chilled to subzero temperatures-could revolutionize the planet's aging and imperfect energy infrastructure, but the remarkable materials remain fundamentally puzzling to physicists. To unlock the true potential of HTS technology, scientists must navigate a quantum-scale labyrinth and pin down the phenomenon's source.

Scientists Discover Hidden Magnetic Waves in High-Temperature Superconductors: Advanced x-ray technique reveals surprising quantum excitations that persist through materials with or without superconductivity

Upton, NY | Posted on August 5th, 2013

Now, scientists at the U.S. Department of Energy's (DOE) Brookhaven National Laboratory and other collaborating institutions have discovered a surprising twist in the magnetic properties of HTS, challenging some of the leading theories. In a new study, published online in the journal Nature Materials on August 4, 2013, scientists found that unexpected magnetic excitations-quantum waves believed by many to regulate HTS-exist in both non-superconducting and superconducting materials.

"This is a major experimental clue about which magnetic excitations are important for high-temperature superconductivity," said Mark Dean, a physicist at Brookhaven Lab and lead author on the new paper. "Cutting-edge x-ray scattering techniques allowed us to see excitations in samples previously thought to be essentially non-magnetic."

On the atomic scale, electron spins-a bit like tiny bar magnets pointed in specific directions-rapidly interact with each other throughout magnetic materials. When one spin rotates, this disturbance can propagate through the material as a wave, tipping and aligning the spins of neighboring electrons. Many researchers believe that this subtle excitation wave may bind electrons together to create the perfect current conveyance of HTS, which operates at slightly warmer temperatures than traditional superconductivity.

"Proving or disproving this hypothesis remains one of the holy grails of condensed matter physics research," Dean said. "This discovery gives us a new way to evaluate rival theories of HTS."

Perfectly Dope

Superconductivity demands extremely cold conditions and a precise chemical recipe. Beyond selecting the right elements from the periodic table, physicists carefully tweak the electron content of atoms through a process called doping. Doping determines the average number of electrons present in each atom, and in turn dictates both the behavior of spin waves and the presence of HTS, which emerges around a particular doping sweet spot.

For this study, the team examined thin films of lanthanum, strontium, copper, and oxygen-often abbreviated as LSCO. These particular HTS materials can be tuned to exhibit a wide range of different electronic behaviors.

"This is the only system that lets us examine the entire phase diagram, from a strongly correlated insulator all the way to a non-superconducting metal," said Brookhaven physicist John Hill, coauthor on the paper. "We could measure magnetic excitations both before and after the ideal doping levels for superconductivity."

To grow these materials, Brookhaven Lab physicist Ivan Bozovic-another author on the study-used a custom-built atomic layer-by-layer molecular beam epitaxy machine (ALL-MBE). Bozovic's system is uniquely equipped to monitor the synthesis of the LSCO films in real-time, giving him an unparalleled degree of control over the atomic composition of each layer, including adjustments to the doping levels.

"Ivan grows these beautiful, fantastic films," Hill said. "His samples are highly uniform with flat, mirror-like surfaces. This helps enormously when trying to pin down the subtleties of how these samples scatter x-rays."

Measuring a Quantum Sea

The quantum ripples themselves have wavelengths measured on the Ångstrom scale-smaller than one billionth of a meter. To detect these tiny fluctuations, the scientists applied a technique called resonant inelastic x-ray scattering (RIXS) to the full range of LSCO films. The measurements were taken with the Advanced X-ray Emission Spectrometer at the European Synchrotron Radiation Facility (ESRF) in France. The design, construction, and commissioning of this instrument was led by Giacomo Ghiringhelli and Lucio Braicovich at the Politecnico di Milano in Italy and by Nick Brookes at the ESRF. The Brookhaven Lab team worked in close collaboration with these scientists to perform the RIXS measurements.

"This instrument allowed us to precisely measure how much energy the x-rays lost when they struck each LSCO sample," Dean said. "We could then pinpoint the presence or absence of magnetic excitations and track them across all the different doping levels."

Earlier studies using neutron scattering found that magnetic excitations appeared to vanish in the overdoped LSCO samples, bolstering the prominent theory that the waves play an essential role in superconductivity. The RIXS technique, however, is much more sensitive to magnetic excitations with certain wavelengths and capable of detecting otherwise imperceptible signals.

"Discovering excitations that do not depend on doping levels means that the relationship between HTS and the waves in these films is more intricate than we suspected," Hill said.

Brighter Beams and Better Superconductors

RIXS is currently able to detect magnetic excitations with a precision, or energy resolution, of about 100 milli-electron volts. But as scientists seek more fundamental phenomena, even greater accuracy and sensitivity is required. Brookhaven Lab's National Synchrotron Light Source II (NSLS-II), expected to start operating in 2014, will produce some of the brightest x-rays in the world. The Soft Inelastic X-ray beamline under construction at NSLS-II promises unprecedented energy resolution for HTS investigations.

"Ultimately, the RIXS energy resolution is still not as good as we'd like," Dean said. "NSLS-II is going to be huge for the superconductivity game-absolutely huge. We'll be able to see excitations down at 10 milli-electron volts, and there should be real breakthroughs hidden there."

Solving the mystery of high-temperature superconductivity could radically improve technology ranging from wind turbines to medical imaging devices. But to manipulate the perfect electricity conveyance possible in HTS materials and possibly bring them up to room temperature, theorists must transform these experimental results into universally applicable rules.

"The joke is that HTS has in fact already been solved, but we just don't know which of the many competing theories is the right one," Hill said. "Our discovery was actually predicted by a few groups, and we're excited to see them leap on the results and drive our understanding forward. The work is fundamentally interesting, yes, but the potential applications are really exciting."

The research was funded through Brookhaven Lab's Center for Emergent Superconductivity, an Energy Frontier Research Center funded by the U.S. Department of Energy's Office of Science to seek understanding of the underlying nature of superconductivity in complex materials.

DOE's Office of Science is the single largest supporter of basic research in the physical sciences in the United States, and is working to address some of the most pressing challenges of our time. For more information, please visit science.energy.gov.

####

About Brookhaven National Laboratory
One of ten national laboratories overseen and primarily funded by the Office of Science of the U.S. Department of Energy (DOE), Brookhaven National Laboratory conducts research in the physical, biomedical, and environmental sciences, as well as in energy technologies and national security. Brookhaven Lab also builds and operates major scientific facilities available to university, industry and government researchers. Brookhaven is operated and managed for DOE's Office of Science by Brookhaven Science Associates, a limited-liability company founded by the Research Foundation for the State University of New York on behalf of Stony Brook University, the largest academic user of Laboratory facilities, and Battelle, a nonprofit, applied science and technology organization.

Visit Brookhaven Lab's electronic newsroom for links, news archives, graphics, and more at www.bnl.gov/newsroom, follow Brookhaven Lab on Twitter, twitter.com/BrookhavenLab, or find us on Facebook, www.facebook.com/BrookhavenLab/.

For more information, please click here

Contacts:
Justin Eure
(631) 344-2347

or
Peter Genzer
(631) 344-3174

Copyright © Brookhaven National Laboratory

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

Scientific paper: "Persistence of magnetic excitations in La2-xSrxCuO4 from the undoped insulator to the heavily overdoped non-superconducting metal":

Related News Press

News and information

Researchers find new way to control light with electric fields May 25th, 2017

Nanometrics Announces Retirement Plans of CEO Timothy Stultz: Dr. Stultz to Continue as Director May 25th, 2017

Nanomechanics, Inc. to Exhibit at the SEM Conference: Nanoindentation experts will attend and exhibit their instruments at the Conference and Exposition on Experimental and Applied Mechanics in Indianapolis May 25th, 2017

Three-dimensional graphene: Experiment at BESSY II shows that optical properties are tuneable May 24th, 2017

Laboratories

NREL’s Advanced Atomic Layer Deposition Enables Lithium-Ion Battery Technology: May 10th, 2017

Discovery of new transparent thin film material could improve electronics and solar cells: Conductivity is highest-ever for thin film oxide semiconductor material May 6th, 2017

Sandia develops math techniques to improve computational efficiency in quantum chemistry May 5th, 2017

Scientists Set Record Resolution for Drawing at the One-Nanometer Length Scale: An electron microscope-based lithography system for patterning materials at sizes as small as a single nanometer could be used to create and study materials with new properties May 1st, 2017

Video captures bubble-blowing battery in action: Researchers propose how bubbles form, could lead to smaller lithium-air batteries April 26th, 2017

Superconductivity

Ultracold atom waves may shed light on rogue ocean killers: Rice quantum experiments probe underlying physics of rogue ocean waves April 27th, 2017

Physics

Ultracold atom waves may shed light on rogue ocean killers: Rice quantum experiments probe underlying physics of rogue ocean waves April 27th, 2017

Geoffrey Beach: Drawn to explore magnetism: Materials researcher is working on the magnetic memory of the future April 25th, 2017

NIST physicists show ion pairs perform enhanced 'spooky action' March 30th, 2017

Govt.-Legislation/Regulation/Funding/Policy

Researchers find new way to control light with electric fields May 25th, 2017

Zap! Graphene is bad news for bacteria: Rice, Ben-Gurion universities show laser-induced graphene kills bacteria, resists biofouling May 22nd, 2017

Graphene-nanotube hybrid boosts lithium metal batteries: Rice University prototypes store 3 times the energy of lithium-ion batteries May 19th, 2017

Stanford scientists use nanotechnology to boost the performance of key industrial catalyst May 18th, 2017

Discoveries

Researchers find new way to control light with electric fields May 25th, 2017

Three-dimensional graphene: Experiment at BESSY II shows that optical properties are tuneable May 24th, 2017

Zap! Graphene is bad news for bacteria: Rice, Ben-Gurion universities show laser-induced graphene kills bacteria, resists biofouling May 22nd, 2017

Graphene-nanotube hybrid boosts lithium metal batteries: Rice University prototypes store 3 times the energy of lithium-ion batteries May 19th, 2017

Announcements

Researchers find new way to control light with electric fields May 25th, 2017

Nanometrics Announces Retirement Plans of CEO Timothy Stultz: Dr. Stultz to Continue as Director May 25th, 2017

Nanomechanics, Inc. to Exhibit at the SEM Conference: Nanoindentation experts will attend and exhibit their instruments at the Conference and Exposition on Experimental and Applied Mechanics in Indianapolis May 25th, 2017

Three-dimensional graphene: Experiment at BESSY II shows that optical properties are tuneable May 24th, 2017

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers

Researchers find new way to control light with electric fields May 25th, 2017

Three-dimensional graphene: Experiment at BESSY II shows that optical properties are tuneable May 24th, 2017

Zap! Graphene is bad news for bacteria: Rice, Ben-Gurion universities show laser-induced graphene kills bacteria, resists biofouling May 22nd, 2017

Graphene-nanotube hybrid boosts lithium metal batteries: Rice University prototypes store 3 times the energy of lithium-ion batteries May 19th, 2017

Research partnerships

Three-dimensional graphene: Experiment at BESSY II shows that optical properties are tuneable May 24th, 2017

Zap! Graphene is bad news for bacteria: Rice, Ben-Gurion universities show laser-induced graphene kills bacteria, resists biofouling May 22nd, 2017

Sensors detect disease markers in breath May 19th, 2017

Stanford scientists use nanotechnology to boost the performance of key industrial catalyst May 18th, 2017

Quantum nanoscience

The speed limit for intra-chip communications in microprocessors of the future January 23rd, 2017

First experimental proof of a 70 year old physics theory: First observation of magnetic phase transition in 2-D materials, as predicted by the Nobel winner Onsager in 1943 January 6th, 2017

Quantum simulation technique yields topological soliton state in SSH model January 3rd, 2017

Diamonds are technologists' best friends: Researchers from the Lomonosov Moscow State University have grown needle- and thread-like diamonds and studied their useful properties December 30th, 2016

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project