Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > Making a Mini Mona Lisa: Nanotechnique creates image 30 microns in width

Gray Scale Mona Lisa
Gray Scale Mona Lisa

Abstract:
The world's most famous painting has now been created on the world's smallest canvas. Researchers at the Georgia Institute of Technology have "painted" the Mona Lisa on a substrate surface approximately 30 microns in width - or one-third the width of a human hair. The team's creation, the "Mini Lisa," demonstrates a technique that could potentially be used to achieve nanomanufacturing of devices because the team was able to vary the surface concentration of molecules on such short-length scales.

Making a Mini Mona Lisa: Nanotechnique creates image 30 microns in width

Atlanta, GA | Posted on August 5th, 2013

The image was created with an atomic force microscope and a process called ThermoChemical NanoLithography (TCNL). Going pixel by pixel, the Georgia Tech team positioned a heated cantilever at the substrate surface to create a series of confined nanoscale chemical reactions. By varying only the heat at each location, Ph.D. Candidate Keith Carroll controlled the number of new molecules that were created. The greater the heat, the greater the local concentration. More heat produced the lighter shades of gray, as seen on the Mini Lisa's forehead and hands. Less heat produced the darker shades in her dress and hair seen when the molecular canvas is visualized using fluorescent dye. Each pixel is spaced by 125 nanometers.

"By tuning the temperature, our team manipulated chemical reactions to yield variations in the molecular concentrations on the nanoscale," said Jennifer Curtis, an associate professor in the School of Physics and the study's lead author. "The spatial confinement of these reactions provides the precision required to generate complex chemical images like the Mini Lisa."

Production of chemical concentration gradients and variations on the sub-micrometer scale are difficult to achieve with other techniques, despite a wide range of applications the process could allow. The Georgia Tech TCNL research collaboration, which includes associate professor Elisa Riedo and Regents Professor Seth Marder, produced chemical gradients of amine groups, but expects that the process could be extended for use with other materials.

"We envision TCNL will be capable of patterning gradients of other physical or chemical properties, such as conductivity of graphene," Curtis said. "This technique should enable a wide range of previously inaccessible experiments and applications in fields as diverse as nanoelectronics, optoelectronics and bioengineering."

Another advantage, according to Curtis, is that atomic force microscopes are fairly common and the thermal control is relatively straightforward, making the approach accessible to both academic and industrial laboratories. To facilitate their vision of nano-manufacturing devices with TCNL, the Georgia Tech team has recently integrated nanoarrays of five thermal cantilevers to accelerate the pace of production. Because the technique provides high spatial resolutions at a speed faster than other existing methods, even with a single cantilever, Curtis is hopeful that TCNL will provide the option of nanoscale printing integrated with the fabrication of large quantities of surfaces or everyday materials whose dimensions are more than one billion times larger than the TCNL features themselves.

The paper, Fabricating Nanoscale Chemical Gradients with ThermoChemical NanoLithography, is published online by the journal Langmuir.

This research was funded by the National Science Foundation (PHYS-0849497, DMR-0120967, DMR-0820382 and CMMI-1100290). The findings and conclusions are those of the authors and do not necessarily represent the official views of the NSF. This material is based upon work supported by the Department of Energy (Office of Basic Energy Services) under award number DE-FG02-06ER46293. This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness or usefulness of any information, apparatus, product or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process or service by trade name, trademark, manufacturer or otherwise does not necessarily constitute or imply its endorsement, recommendation or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

####

For more information, please click here

Contacts:
Jason Maderer

404-385-2966

Copyright © Georgia Institute of Technology

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

Journal Article:

College of Sciences:

Jennifer Curtis:

School of Physics:

Related News Press

News and information

MEMS chips get metatlenses: Combining metasurface lenses with MEMS technology could add high-speed scanning and enhance focusing capability of optical systems February 21st, 2018

Atomic structure of ultrasound material not what anyone expected February 21st, 2018

Oxford Instruments announces Dr Kate Ross as winner of the 2018 Lee Osheroff Richardson Science Prize for North and South America February 20th, 2018

Computers aid discovery of new, inexpensive material to make LEDs with high color quality February 20th, 2018

Chemistry

Ultra-efficient removal of carbon monoxide using gold nanoparticles on a molecular support: New method and mechanism for state-of-the-art gas purification February 9th, 2018

Fast-spinning spheres show nanoscale systems' secrets: Rice University lab demonstrates energetic properties of colloids in spinning magnetic field February 7th, 2018

New filters could enable manufacturers to perform highly-selective chemical separation January 23rd, 2018

Nanowrinkles could save billions in shipping and aquaculture Surfaces inspired by carnivorous plants delay degradation by marine fouling January 17th, 2018

Govt.-Legislation/Regulation/Funding/Policy

Computers aid discovery of new, inexpensive material to make LEDs with high color quality February 20th, 2018

Arrowhead Receives Regulatory Clearance to Begin Phase 1/2 Study of ARO-HBV for Treatment of Hepatitis B February 15th, 2018

Arrowhead Pharmaceuticals Receives Orphan Drug Designation for ARO-AAT February 15th, 2018

Rutgers-Led Innovation Could Spur Faster, Cheaper, Nano-Based Manufacturing: Scalable and cost-effective manufacturing of thin film devices February 14th, 2018

Molecular Nanotechnology

Moving nanoparticles using light and magnetic fields January 25th, 2018

Piecework at the nano assembly line: Electric fields drive nano-motors a 100,000 times faster than previous methods January 22nd, 2018

'Gyroscope' molecules form crystal that's both solid and full of motion: New type of molecular machine designed by UCLA researchers could have wide-ranging applications in technology and science January 16th, 2018

Going swimmingly: Biotemplates breakthrough paves way for cheaper nanobots: By using bacterial flagella as a template for silica, researchers have demonstrated an easier way to make propulsion systems for nanoscale swimming robots November 30th, 2017

Nanoelectronics

Graphene on toast, anyone? Rice University scientists create patterned graphene onto food, paper, cloth, cardboard February 13th, 2018

Vanadium dioxyde: A revolutionary material for tomorrow's electronics: Phase-chance switch can now be performed at higher temperatures February 5th, 2018

Measuring the temperature of two-dimensional materials at the atomic level February 3rd, 2018

Viewing atomic structures of dopant atoms in 3-D relating to electrical activity in a semiconductor December 28th, 2017

Discoveries

MEMS chips get metatlenses: Combining metasurface lenses with MEMS technology could add high-speed scanning and enhance focusing capability of optical systems February 21st, 2018

Atomic structure of ultrasound material not what anyone expected February 21st, 2018

Computers aid discovery of new, inexpensive material to make LEDs with high color quality February 20th, 2018

Unconventional superconductor may be used to create quantum computers of the future: They have probably succeeded in creating a topological superconductor February 19th, 2018

Announcements

MEMS chips get metatlenses: Combining metasurface lenses with MEMS technology could add high-speed scanning and enhance focusing capability of optical systems February 21st, 2018

Atomic structure of ultrasound material not what anyone expected February 21st, 2018

Oxford Instruments announces Dr Kate Ross as winner of the 2018 Lee Osheroff Richardson Science Prize for North and South America February 20th, 2018

Computers aid discovery of new, inexpensive material to make LEDs with high color quality February 20th, 2018

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers

MEMS chips get metatlenses: Combining metasurface lenses with MEMS technology could add high-speed scanning and enhance focusing capability of optical systems February 21st, 2018

Atomic structure of ultrasound material not what anyone expected February 21st, 2018

Computers aid discovery of new, inexpensive material to make LEDs with high color quality February 20th, 2018

Photonic chip guides single photons, even when there are bends in the road February 16th, 2018

Tools

MEMS chips get metatlenses: Combining metasurface lenses with MEMS technology could add high-speed scanning and enhance focusing capability of optical systems February 21st, 2018

Oxford Instruments announces Dr Kate Ross as winner of the 2018 Lee Osheroff Richardson Science Prize for North and South America February 20th, 2018

New method enables high-resolution measurements of magnetism February 7th, 2018

Nanometrics Selected for Fab-Wide Process Control Metrology by Domestic China 3D-NAND Manufacturer: Latest Fab Win Includes Comprehensive Suite for Substrate, Thin Film and Critical Dimension Metrology February 7th, 2018

Human Interest/Art

Weizmann Institute of Science Presents: Weizmann Wonder Wander - 4G - is Online June 21st, 2016

Call for NanoArt and Art-Science-Technology Papers June 9th, 2016

Scientists propose non-animal tools for assessing the toxicity of nanomaterials: Particle and Fibre Toxicology publishes recommendations from expert group meeting April 26th, 2016

Are humans the new supercomputer?Today, people of all backgrounds can contribute to solving serious scientific problems by playing computer games. A Danish research group has extended the limits of quantum physics calculations and simultaneously blurred the boundaries between mac April 14th, 2016

Nanobiotechnology

Arrowhead Receives Regulatory Clearance to Begin Phase 1/2 Study of ARO-HBV for Treatment of Hepatitis B February 15th, 2018

Arrowhead Pharmaceuticals Receives Orphan Drug Designation for ARO-AAT February 15th, 2018

'Living bandages': NUST MISIS scientists develop biocompatible anti-burn nanofibers February 15th, 2018

Understanding brain functions using upconversion nanoparticles: Researchers can now send light deep into the brain to study neural activities February 14th, 2018

Photonics/Optics/Lasers

Photonic chip guides single photons, even when there are bends in the road February 16th, 2018

Rutgers-Led Innovation Could Spur Faster, Cheaper, Nano-Based Manufacturing: Scalable and cost-effective manufacturing of thin film devices February 14th, 2018

Understanding brain functions using upconversion nanoparticles: Researchers can now send light deep into the brain to study neural activities February 14th, 2018

Graphene on toast, anyone? Rice University scientists create patterned graphene onto food, paper, cloth, cardboard February 13th, 2018

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project