Nanotechnology Now







Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > An infallible quantum measurement

The new method allows for reliable statements about the entanglement in a system.
Fotonachweis: Uni Innsbruck/Ritsch
The new method allows for reliable statements about the entanglement in a system.

Fotonachweis: Uni Innsbruck/Ritsch

Abstract:
For quantum physicists, entangling quantum systems is one of their every day tools. Entanglement is a key resource for upcoming quantum computers and simulators. Now, physicists in Innsbruck/Austria and Geneva/Switzerland realized a new, reliable method to verify entanglement in the laboratory using a minimal number of assumptions about the system and measuring devices. Hence, this method witnesses the presence of useful entanglement. Their findings on this ‘verification without knowledge' has been published in Nature Physics.

An infallible quantum measurement

Innsbruck, Austria and Geneva, Switzerland | Posted on August 5th, 2013

Quantum computation, quantum communication and quantum cryptography often require entanglement. For many of these upcoming quantum technologies, entanglement - this hard to grasp, counter-intuitive aspect in the quantum world - is a key ingredient. Therefore, experimental physicists often need to verify entanglement in their systems. "Two years ago, we managed to verify entanglement between up to 14 ions", explains Thomas Monz. He works in the group of Rainer Blatt at the Institute for Experimental Physics, University Innsbruck. This team is still holding the world-record for the largest number of entangled particles. "In order to verify the entanglement, we had to make some, experimentally calibrated, assumptions. However, assumptions, for instance about the number of dimensions of the system or a decent calibration, make any subsequently derived statements vulnerable", explains Monz. Together with Julio Barreiro, who recently moved on the Max Planck Institute of Quantum Optics in Garching, and Jean-Daniel Bancal from the group of Nicolas Gisin at the University of Geneva, now at the Center for Quantum Technologies in Singapore, the physicists derived and implemented a new method to verify entanglement between several objects.
Finding correlations

The presented device-independent method is based on a single assumption: "We only have to make sure that we always apply the same set of operations on the quantum objects, and that the operations are independent of each other", explains Julio Barreiro. "However, which operations we apply in detail - this is something we do not need to know." This approach - called Device Independent - allows them to get around several potential sources of error, and subsequently wrong interpretations of the results. "In the end, we investigate the correlations between the settings and the obtained results. Once the correlations exceed a certain threshold, we know that the objects are entangled." For the experimentally hardly avoidable crosstalk of operations applied to levitating calcium ions in the vacuum chamber in Innsbruck, the Swiss theorist Jean-Daniel Bancal managed to adapt the threshold according to a worst-case scenario. "When this higher threshold is breached, we can claim entanglement in the system with high confidence", states Bancal.
Assumptions as Achilles heel

For physicists, such procedures that are based on very few assumptions are highly interesting. By being basically independent of the system, they provide high confidence and strengthen the results of experimentalists. "Assumptions are always the Achilles heel - be that for lab data or theory work", stresses Thomas Monz. "We managed to reduce the number of assumption to verify entanglement to a minimum. Our method thus allows for reliable statements about the entanglement in a system." In the actual implementation, the physicists in Innsbruck could verify entanglement of up to 6 ions. This new method can also be applied for larger systems. The technical demands, however, also increase accordingly.

####

For more information, please click here

Contacts:
Thomas Monz

43-512-507-52452

Jean-Daniel Bancal
Centre of Quantum Technologies
National University of Singapore
Tel.: +65 6516 5626


Christian Flatz
Public Relations
University of Innsbruck
Tel.: +43 512 507 32022
Mobil: +43 676 872532022

Copyright © University of Innsbruck

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

Publication: Demonstration of genuine multipartite entanglement with device-independent witnesses. Julio T. Barreiro, Jean-Daniel Bancal, Philipp Schindler, Daniel Nigg, Markus Hennrich, Thomas Monz, Nicolas Gisin, and Rainer Blatt. Advance Online Publication, Nature Physics 2013 (DOI: 10.1038/NPHYS2705):

Related News Press

News and information

CiQUS researchers obtain high-quality perovskites over large areas by a chemical method March 4th, 2015

Arrowhead to Present at 2015 Barclays Global Healthcare Conference March 4th, 2015

Nanosorbents Increase Extraction, Recycling of Silver from Aqueous Solutions March 4th, 2015

Black phosphorus is new 'wonder material' for improving optical communication March 3rd, 2015

Physics

Breakthrough in OLED technology March 2nd, 2015

Forbidden quantum leaps possible with high-res spectroscopy March 2nd, 2015

Moving molecule writes letters: Caging of molecules allows investigation of equilibrium thermodynamics February 27th, 2015

Real-time observation of bond formation by using femtosecond X-ray liquidography February 26th, 2015

Quantum Computing

Forbidden quantum leaps possible with high-res spectroscopy March 2nd, 2015

Important step towards quantum computing: Metals at atomic scale March 2nd, 2015

Waterloo invention advances quantum computing research: New device, which will be used in labs around the world to develop quantum technologies, produces fragile entangled photons in a more efficient way February 16th, 2015

Quantum research past, present and future for discussion at AAAS February 16th, 2015

Discoveries

CiQUS researchers obtain high-quality perovskites over large areas by a chemical method March 4th, 2015

Nanosorbents Increase Extraction, Recycling of Silver from Aqueous Solutions March 4th, 2015

The taming of magnetic vortices: Unified theory for skyrmion-materials March 3rd, 2015

Democratizing synthetic biology: New method makes research cheaper, faster, and more accessible March 3rd, 2015

Announcements

CiQUS researchers obtain high-quality perovskites over large areas by a chemical method March 4th, 2015

Arrowhead to Present at 2015 Barclays Global Healthcare Conference March 4th, 2015

Nanosorbents Increase Extraction, Recycling of Silver from Aqueous Solutions March 4th, 2015

Black phosphorus is new 'wonder material' for improving optical communication March 3rd, 2015

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers

Nanosorbents Increase Extraction, Recycling of Silver from Aqueous Solutions March 4th, 2015

Democratizing synthetic biology: New method makes research cheaper, faster, and more accessible March 3rd, 2015

Pens filled with high-tech inks for do-it-yourself sensors March 3rd, 2015

Black phosphorus is new 'wonder material' for improving optical communication March 3rd, 2015

Quantum nanoscience

Important step towards quantum computing: Metals at atomic scale March 2nd, 2015

Quantum many-body systems on the way back to equilibrium: Advances in experimental and theoretical physics enable a deeper understanding of the dynamics and properties of quantum many-body systems February 25th, 2015

Quantum research past, present and future for discussion at AAAS February 16th, 2015

Exotic states materialize with supercomputers February 12th, 2015

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More










ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2015 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE