Nanotechnology Now







Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > Iranian Researchers Invent New Method for Removing Aromatic Compounds from Vehicle Fuel

Abstract:
Iranian researchers from Isfahan University in association with researchers from Acadia University in Canada, succeeded in the presentation of an effective, simple and helpful method to desulfurize and eliminate aromatic compounds based on magnetic adsorbent on the surface of mesoporous carbon.

Iranian Researchers Invent New Method for Removing Aromatic Compounds from Vehicle Fuel

Terhan, Iran | Posted on August 4th, 2013

The elimination and separation of cyclic aromatic compounds from fuels such as gasoline and gasoil were carried out by using the usual and industrial hydrodesulfurization (HDS) method, which required hard temperature and pressure conditions, the use of hydrogen gas, consuming much cost, and numerous equipment.

The aim of this research was to separate one of the most difficult sulfuric compounds named dibenzotiophene in mild conditions of temperature and pressure without needing the hazardous hydrogen gas by using nanostructured materials.

Dr. Najmeh Farzinnejad, PhD undergraduate in analytical chemistry from Isfahan University, elaborated on the research. "As you know, when nanostructures are used, the ratio of surface to volume increases. Nanoadsorbents carry out the separation better when they are dispersed in the liquid system. The only problem with nanostructured adsorbents is the separation of the adsorbent itself from the solution, which requires centrifugal and strong adsorbing systems because it has been dispersed in the liquid. In order to benefit from the nanometric properties of the adsorbent and its simple separation, it was decided that a magnetic adsorbent with appropriate hole to adsorb dibenzothiophene is made. This plan solves the problem with the separation of the adsorbent from the solution because it can be separated easily within a few seconds by using a small magnet."

The plan has direct application in petroleum industries and indirect application in automobile manufacturing and environmental industries. The removal of these materials specifically from diesel fuels such as gasoil leads to the production of fuel with less amount of sulfur that decreases environmental pollution.

Results of the research have been published in February 2013 in Fuel Processing Technology, vol. 106, issue 5. For more information about the details of the research, study the full article on pages 376-384 on the same journal.

####

For more information, please click here

Copyright © Fars News Agency

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Roll up your screen and stow it away? Tel Aviv University researchers develop molecular backbone of super-slim, bendable digital displays March 30th, 2015

Princess Margaret scientists convert microbubbles to nanoparticles: Harnessing light to advance tumor imaging, provide platform for targeted treatment March 30th, 2015

Wrapping carbon nanotubes in polymers enhances their performance: Scientists at Japan's Kyushu University say polymer-wrapped carbon nanotubes hold much promise in biotechnology and energy applications March 30th, 2015

Tokyo Institute of Technology research: Catalyst redefines rate limitations in ammonia production March 30th, 2015

Announcements

Princess Margaret scientists convert microbubbles to nanoparticles: Harnessing light to advance tumor imaging, provide platform for targeted treatment March 30th, 2015

Wrapping carbon nanotubes in polymers enhances their performance: Scientists at Japan's Kyushu University say polymer-wrapped carbon nanotubes hold much promise in biotechnology and energy applications March 30th, 2015

Tokyo Institute of Technology research: Catalyst redefines rate limitations in ammonia production March 30th, 2015

Next important step toward quantum computer: Scientists at the University of Bonn have succeeded in linking 2 different quantum systems March 30th, 2015

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers

Princess Margaret scientists convert microbubbles to nanoparticles: Harnessing light to advance tumor imaging, provide platform for targeted treatment March 30th, 2015

Wrapping carbon nanotubes in polymers enhances their performance: Scientists at Japan's Kyushu University say polymer-wrapped carbon nanotubes hold much promise in biotechnology and energy applications March 30th, 2015

Tokyo Institute of Technology research: Catalyst redefines rate limitations in ammonia production March 30th, 2015

Next important step toward quantum computer: Scientists at the University of Bonn have succeeded in linking 2 different quantum systems March 30th, 2015

Environment

Young NTU Singapore spin-off clinches S$4.3 million joint venture with Chinese commercial giant March 23rd, 2015

New processing technology converts packing peanuts to battery components March 22nd, 2015

EU Funded PCATDES Project has completed its half-period with success March 19th, 2015

Are current water treatment methods sufficient to remove harmful engineered nanoparticle? March 10th, 2015

Energy

Wrapping carbon nanotubes in polymers enhances their performance: Scientists at Japan's Kyushu University say polymer-wrapped carbon nanotubes hold much promise in biotechnology and energy applications March 30th, 2015

Solving molybdenum disulfide's 'thin' problem: Research team increases material's light emission by twelve times March 29th, 2015

LAMDAMAP 2015 hosted by the University March 26th, 2015

SUNY Poly & M+W Make Major Announcement: Major Expansion To Include M+W Owned Gehrlicher Solar America Corporation That Will Create up to 400 Jobs to Develop Solar Power Plants at SUNY Poly Sites Across New York State March 26th, 2015

Automotive/Transportation

Clean energy future: New cheap and efficient electrode for splitting water March 18th, 2015

Imperfect graphene opens door to better fuel cells: Membrane could lead to fast-charging batteries for transportation March 18th, 2015

Researchers synthesize new thin-film material for use in fuel cells: Article in the journal APL Materials shows how to grow Bi2Pt2O7 pyrochlore, potentially a more effective cathode for future fuel cells March 10th, 2015

Glass coating improves battery performance: To improve lithium-sulfur batteries, researchers added glass cage-like coating and graphene oxide March 2nd, 2015

Research partnerships

'Atomic chicken-wire' is key to faster DNA sequencing March 30th, 2015

SUNY Poly & M+W Make Major Announcement: Major Expansion To Include M+W Owned Gehrlicher Solar America Corporation That Will Create up to 400 Jobs to Develop Solar Power Plants at SUNY Poly Sites Across New York State March 26th, 2015

ORNL-led team demonstrates desalination with nanoporous graphene membrane March 25th, 2015

New kind of 'tandem' solar cell developed: Researchers combine 2 types of photovoltaic material to make a cell that harnesses more sunlight March 24th, 2015

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More










ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2015 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE