Nanotechnology Now

Our NanoNews Digest Sponsors





Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > Iranian Researchers Invent New Method for Removing Aromatic Compounds from Vehicle Fuel

Abstract:
Iranian researchers from Isfahan University in association with researchers from Acadia University in Canada, succeeded in the presentation of an effective, simple and helpful method to desulfurize and eliminate aromatic compounds based on magnetic adsorbent on the surface of mesoporous carbon.

Iranian Researchers Invent New Method for Removing Aromatic Compounds from Vehicle Fuel

Terhan, Iran | Posted on August 4th, 2013

The elimination and separation of cyclic aromatic compounds from fuels such as gasoline and gasoil were carried out by using the usual and industrial hydrodesulfurization (HDS) method, which required hard temperature and pressure conditions, the use of hydrogen gas, consuming much cost, and numerous equipment.

The aim of this research was to separate one of the most difficult sulfuric compounds named dibenzotiophene in mild conditions of temperature and pressure without needing the hazardous hydrogen gas by using nanostructured materials.

Dr. Najmeh Farzinnejad, PhD undergraduate in analytical chemistry from Isfahan University, elaborated on the research. "As you know, when nanostructures are used, the ratio of surface to volume increases. Nanoadsorbents carry out the separation better when they are dispersed in the liquid system. The only problem with nanostructured adsorbents is the separation of the adsorbent itself from the solution, which requires centrifugal and strong adsorbing systems because it has been dispersed in the liquid. In order to benefit from the nanometric properties of the adsorbent and its simple separation, it was decided that a magnetic adsorbent with appropriate hole to adsorb dibenzothiophene is made. This plan solves the problem with the separation of the adsorbent from the solution because it can be separated easily within a few seconds by using a small magnet."

The plan has direct application in petroleum industries and indirect application in automobile manufacturing and environmental industries. The removal of these materials specifically from diesel fuels such as gasoil leads to the production of fuel with less amount of sulfur that decreases environmental pollution.

Results of the research have been published in February 2013 in Fuel Processing Technology, vol. 106, issue 5. For more information about the details of the research, study the full article on pages 376-384 on the same journal.

####

For more information, please click here

Copyright © Fars News Agency

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Thin films offer promise for ferroelectric devices: Researchers at Tokyo Institute of Technology demystify the ferroelectric properties observed in hafnium-oxide-based thin films, revealing a potentially useful device material August 3rd, 2015

Harris & Harris Group Portfolio Company, HZO, Announces Partnerships with Dell and Motorola August 1st, 2015

Advances and Applications in Biosensing, Sensor Power, and Sensor R&D to be Covered at Sensors Global Summit August 1st, 2015

Kalam: versatility personified August 1st, 2015

Announcements

Thin films offer promise for ferroelectric devices: Researchers at Tokyo Institute of Technology demystify the ferroelectric properties observed in hafnium-oxide-based thin films, revealing a potentially useful device material August 3rd, 2015

Transparent, electrically conductive network of encapsulated silver nanowires: A novel electrode for optoelectronics August 1st, 2015

Harris & Harris Group Portfolio Company, HZO, Announces Partnerships with Dell and Motorola August 1st, 2015

Advances and Applications in Biosensing, Sensor Power, and Sensor R&D to be Covered at Sensors Global Summit August 1st, 2015

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers

Thin films offer promise for ferroelectric devices: Researchers at Tokyo Institute of Technology demystify the ferroelectric properties observed in hafnium-oxide-based thin films, revealing a potentially useful device material August 3rd, 2015

Shaping the hilly landscapes of a semi-conductor nanoworld August 1st, 2015

Solid state physics: Quantum matter stuck in unrest August 1st, 2015

Self-assembling, biomimetic membranes may aid water filtration August 1st, 2015

Environment

March 2016; 6th Int'l Conference on Nanostructures in Iran July 29th, 2015

Laboratorial Performance of Nanocomposite Membrane Improved in Water Purification July 28th, 2015

Nanosorbents Reduce Amount of Heavy Metals in Petrochemical Wastewater July 23rd, 2015

Nanopaper as an optical sensing platform July 23rd, 2015

Energy

Transparent, electrically conductive network of encapsulated silver nanowires: A novel electrode for optoelectronics August 1st, 2015

Springer and Tsinghua University Press present the second Nano Research Award: Paul Alivisatos of the University of California Berkeley receives the honor for outstanding contributions in nanoscience July 30th, 2015

Controlling Dynamic Behavior of Carbon Nanosheets in Structures Made Possible July 30th, 2015

March 2016; 6th Int'l Conference on Nanostructures in Iran July 29th, 2015

Automotive/Transportation

Sol-gel capacitor dielectric offers record-high energy storage July 30th, 2015

Controlling Dynamic Behavior of Carbon Nanosheets in Structures Made Possible July 30th, 2015

Ultra-thin hollow nanocages could reduce platinum use in fuel cell electrodes July 24th, 2015

Researchers boost wireless power transfer with magnetic field enhancement July 23rd, 2015

Research partnerships

Newly-Developed Polymers Control Size of Nanoparticles during Production Process July 30th, 2015

Meet the high-performance single-molecule diode: Major milestone in molecular electronics scored by Berkeley Lab and Columbia University team July 29th, 2015

Spintronics: Molecules stabilizing magnetism: Organic molecules fixing the magnetic orientation of a cobalt surface/ building block for a compact and low-cost storage technology/ publication in Nature Materials July 25th, 2015

Stretching the limits on conducting wires July 25th, 2015

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project