Nanotechnology Now







Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > Cobalt Replacements Make Solar Cells More Sustainable

The dye-sensitized solar cell (DSC) converts light to electricity. A coloured copper complex absorbs light and injects an electron into a semiconductor. This electron then passes around a circuit, does work, and is eventually returned to the copper to regenerate the dye by a transport system. In this new work, the cobalt complex acts as an electron transport agent between the cathode and the dye molecules allowing the photocurrent to flow.Adapted with permission from Bozic-Weber et al., Chem. Commun., 2013,49, 7222-7224 | doi: 10.1039/C3CC44595J. © 2013 Royal Society of Chemistry
The dye-sensitized solar cell (DSC) converts light to electricity. A coloured copper complex absorbs light and injects an electron into a semiconductor. This electron then passes around a circuit, does work, and is eventually returned to the copper to regenerate the dye by a transport system. In this new work, the cobalt complex acts as an electron transport agent between the cathode and the dye molecules allowing the photocurrent to flow.

Adapted with permission from Bozic-Weber et al., Chem. Commun., 2013,49, 7222-7224 | doi: 10.1039/C3CC44595J. © 2013 Royal Society of Chemistry

Abstract:
Researchers at the University of Basel have successfully replaced the rare element iodine in copper-based dye-sensitized solar cells by the more abundant element cobalt, taking a step forward in the development of environmentally friendly energy production. The journal «Chemical Communications» has published the results of these so-called Cu-Co cells.

Cobalt Replacements Make Solar Cells More Sustainable

Basel, Switzerland | Posted on August 2nd, 2013

Dye-sensitized solar cells (DSCs) transform light to electricity. They consist of a semiconductor on which a dye is anchored. This colored complex absorbs light and through an electron transfer process produces electrical current. Electrolytes act as electron transport agents inside the DSCs.

Usually, iodine and iodide serve as an electrolyte. Chemists at the University of Basel have now been able to successfully replace the usual iodine-based electron transport system in copper-based DSCs by a cobalt compound. Tests showed no loss in performance.

The replacement of iodine significantly increases the sustainability of solar cells: «Iodine is a rare element, only present at a level of 450 parts per billion in the Earth, whereas cobalt is 50 times more abundant», explains the Project Officer Dr. Biljana Bozic-Weber. Furthermore, this replacement also removes one of the long-term degradation processes in which copper compounds react with the electrolyte to form copper iodide and thus improves the long-term stability of DSCs.

The research group around the Basel chemistry professors Ed Constable and Catherine Housecroft is currently working on optimizing the performance of DSCs based on copper complexes. They had previously shown in 2012 that the very rare element ruthenium in solar cells could be replaced by copper derivatives.

This is the first report of DSCs, which combine copper-based dyes and cobalt electrolytes and thus represents a critical step towards the development of stable iodide-free copper solar cells. However, many aspects relating to the efficiency need to be addressed before commercialization can begin in anything other than niche markets.

Molecular Systems Engineering

«In changing any one component of these solar cells, it is necessary to optimize all other parts as a consequence», says Ed Constable. This is part of a new approach termed «Molecular Systems Engineering» in which all molecular and material components of a system can be integrated and optimized to approach new levels of sophistication in nanoscale machinery. In this publication, the engineering of the electrolyte, the dye and the semiconductor are all described.

This systems chemistry approach is particularly appropriate for the engineering of inorganic-biological hybrids and is the basis of ongoing collaborations with the ETH Department of Biosystems Engineering in Basel (D-BSSE) and EMPA. A joint proposal by the University of Basel and D-BSSE for a new National Centre of Competence in Research in this area is currently in the final stages of appraisal.

####

For more information, please click here

Contacts:
Reto Caluori

41-612-672-495

University of Basel
Communications Office
Petersgraben 35, Postfach
4003 Basel
Switzerland

Tel. +41 61 267 30 17
Fax +41 61 267 30 13


Prof. Dr. Edwin Constable
University of Basel
Department of Chemistry
Spitalstrasse 51
4056 Basel, Switzerland

Copyright © University of Basel

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

Original Citation

doi: 10.1039/C3CC44595J

Related News Press

News and information

Antibacterial Ceramic Nanoparticles, Appropriate Material for Medical Devices May 3rd, 2015

Oxford Instruments announces winners of the 2015 Sir Martin Wood Science Prize for China May 2nd, 2015

Time Dependant Spectroscopy of Microscopic Samples: CRAIC TimePro™ software is used with CRAIC Technologies microspectrometers to measure the kinetic UV-visible-NIR, Raman and fluorescence spectra of microscopic sample areas May 2nd, 2015

ORNL researchers probe chemistry, topography and mechanics with one instrument May 2nd, 2015

Discoveries

Antibacterial Ceramic Nanoparticles, Appropriate Material for Medical Devices May 3rd, 2015

ORNL researchers probe chemistry, topography and mechanics with one instrument May 2nd, 2015

Novel superconducting undulator provides first x-ray light at ANKA May 1st, 2015

Engineering a better solar cell: UW research pinpoints defects in popular perovskites May 1st, 2015

Announcements

Antibacterial Ceramic Nanoparticles, Appropriate Material for Medical Devices May 3rd, 2015

Nanometrics to Present at the B. Riley & Co. 16th Annual Investor Conference May 2nd, 2015

Time Dependant Spectroscopy of Microscopic Samples: CRAIC TimePro™ software is used with CRAIC Technologies microspectrometers to measure the kinetic UV-visible-NIR, Raman and fluorescence spectra of microscopic sample areas May 2nd, 2015

ORNL researchers probe chemistry, topography and mechanics with one instrument May 2nd, 2015

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers

Antibacterial Ceramic Nanoparticles, Appropriate Material for Medical Devices May 3rd, 2015

ORNL researchers probe chemistry, topography and mechanics with one instrument May 2nd, 2015

FEI Company: Strong Growth Prospects Remain May 1st, 2015

Engineering a better solar cell: UW research pinpoints defects in popular perovskites May 1st, 2015

Energy

Engineering a better solar cell: UW research pinpoints defects in popular perovskites May 1st, 2015

Artificial photosynthesis could help make fuels, plastics and medicine April 29th, 2015

Unique microscopic images provide new insights into ionic liquids April 28th, 2015

ISDC To Showcase Northrop Grumman/Caltech Push Toward Space Solar Power April 28th, 2015

Solar/Photovoltaic

Engineering a better solar cell: UW research pinpoints defects in popular perovskites May 1st, 2015

Artificial photosynthesis could help make fuels, plastics and medicine April 29th, 2015

Unique microscopic images provide new insights into ionic liquids April 28th, 2015

Pseudoparticles travel through photoactive material: KIT scientists measure important process in the conversion of light energy -- publication in Nature Communications April 24th, 2015

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More










ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project