Nanotechnology Now

Our NanoNews Digest Sponsors



Heifer International

Wikipedia Affiliate Button


android tablet pc

Home > Press > Improving Heat Removal Qualities of Graphene: Three Bourns College of Engineering professors will share a $360,000 grant from the National Science Foundation

From left, Alexander A. Balandin, Roger Lake and Ashok Mulchandani
From left, Alexander A. Balandin, Roger Lake and Ashok Mulchandani

Abstract:
Three Bourns College of Engineering professors at the University of California, Riverside have received a three-year, $360,000 grant from the National Science Foundation to further study the thermal properties of graphene, which is expected to lead to new approaches for the removal of heat from advanced electronic and optoelectronic devices.

Improving Heat Removal Qualities of Graphene: Three Bourns College of Engineering professors will share a $360,000 grant from the National Science Foundation

Riverside, CA | Posted on August 1st, 2013

Alexander A. Balandin, a professor of electrical engineering and founding chair of the materials science and engineering program, Roger Lake, a professor of electrical engineering, Ashok Mulchandani, a professor of chemical engineering, will be cooperating on the project called: "Two-dimensional performance with three-dimensional capacity: Engineering the thermal properties of graphene."

Balandin will serve as principal investigator and be responsible for materials characterization and thermal measurements. Lake will perform theoretical and computational studies while Mulchandani will conduct material synthesis and characterization.

The unique properties of graphene - a single atomic plane of carbon atoms - were discovered in Balandin's Nano-Device Laboratory at UC Riverside in 2008. In recent years, the attention of the research community was focused on the properties of twisted bilayer graphene - a special form of graphene bilayers where atomic planes are rotated against each other by some angle.

The objective of this grant is to investigate the effect of rotation angle on the thermal conductivity of twisted bilayer graphene. The UCR team will study the possibility of suppressing the phonon coupling in twisted graphene layers, allowing for the transfer of extraordinary large heat fluxes. The phonons are quanta of crystal lattice vibrations that carry heat in graphene.

The possibility of maintaining two-dimensional properties of graphene in bulk materials through the use of twisting the stacking angles is a transformational concept giving us the best of both worlds - the enhanced performance of two-dimensional combined with the capacity of three-dimensional systems.

####

For more information, please click here

Contacts:
Sean Nealon
Tel: (951) 827-1287

Twitter: seannealon

Copyright © University of California, Riverside

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Atom-thick CCD could capture images: Rice University scientists develop two-dimensional, light-sensitive material December 20th, 2014

Oregon researchers glimpse pathway of sunlight to electricity: Collaboration with Lund University uses modified UO spectroscopy equipment to study 'maze' of connections in photoactive quantum dots December 19th, 2014

Instant-start computers possible with new breakthrough December 19th, 2014

Aculon Hires New Business Development Director December 19th, 2014

Graphene

Pb islands in a sea of graphene magnetise the material of the future December 16th, 2014

Graphene Applied in Production of Recyclable Electrodes December 13th, 2014

Nanoshaping method points to future manufacturing technology December 11th, 2014

Defects are perfect in laser-induced graphene: Rice University lab discovers simple way to make material for energy storage, electronics December 10th, 2014

Govt.-Legislation/Regulation/Funding/Policy

Atom-thick CCD could capture images: Rice University scientists develop two-dimensional, light-sensitive material December 20th, 2014

Oregon researchers glimpse pathway of sunlight to electricity: Collaboration with Lund University uses modified UO spectroscopy equipment to study 'maze' of connections in photoactive quantum dots December 19th, 2014

Switching to spintronics: Berkeley Lab reports on electric field switching of ferromagnetism at room temp December 17th, 2014

ORNL microscopy pencils patterns in polymers at the nanoscale December 17th, 2014

Chip Technology

Instant-start computers possible with new breakthrough December 19th, 2014

Switching to spintronics: Berkeley Lab reports on electric field switching of ferromagnetism at room temp December 17th, 2014

Pb islands in a sea of graphene magnetise the material of the future December 16th, 2014

Stanford team combines logic, memory to build a 'high-rise' chip: Today circuit cards are laid out like single-story towns; Futuristic architecture builds layers of logic and memory into skyscraper chips that would be smaller, faster, cheaper -- and taller December 15th, 2014

Announcements

Atom-thick CCD could capture images: Rice University scientists develop two-dimensional, light-sensitive material December 20th, 2014

Oregon researchers glimpse pathway of sunlight to electricity: Collaboration with Lund University uses modified UO spectroscopy equipment to study 'maze' of connections in photoactive quantum dots December 19th, 2014

Instant-start computers possible with new breakthrough December 19th, 2014

Aculon Hires New Business Development Director December 19th, 2014

Photonics/Optics/Lasers

Atom-thick CCD could capture images: Rice University scientists develop two-dimensional, light-sensitive material December 20th, 2014

Nanoshaping method points to future manufacturing technology December 11th, 2014

Stacking two-dimensional materials may lower cost of semiconductor devices December 11th, 2014

Defects are perfect in laser-induced graphene: Rice University lab discovers simple way to make material for energy storage, electronics December 10th, 2014

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More










ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2014 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE