Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International

Wikipedia Affiliate Button

Home > Press > Researchers overcome technical hurdles in quest for inexpensive, durable electronics and solar cells: University of Minnesota engineers discover novel technology for producing "electronic ink"

Light is emitted from excited argon gas atoms flowing through the glass tube of a plasma reactor. The plasma is a reactive environment used to produce silicon nanocrystals that can be applied to inexpensive, next-generation electronics.
Light is emitted from excited argon gas atoms flowing through the glass tube of a plasma reactor. The plasma is a reactive environment used to produce silicon nanocrystals that can be applied to inexpensive, next-generation electronics.

Abstract:
Electronic touch pads that cost just a few dollars and solar cells that cost the same as roof shingles are one step closer to reality today.

Researchers in the University of Minnesota's College of Science and Engineering and the National Renewable Energy Laboratory in Golden, Colo., have overcome technical hurdles in the quest for inexpensive, durable electronics and solar cells made with non-toxic chemicals. The research was published in the most recent issue of Nature Communications, an international online research journal.

Researchers overcome technical hurdles in quest for inexpensive, durable electronics and solar cells: University of Minnesota engineers discover novel technology for producing "electronic ink"

Minneapolis, MN | Posted on July 30th, 2013

"Imagine a world where every child in a developing country could learn reading and math from a touch pad that costs less than $10 or home solar cells that finally cost less than fossil fuels," said Uwe Kortshagen, a University of Minnesota mechanical engineering professor and one of the co-authors of the paper.

The research team discovered a novel technology to produce a specialized type of ink from non-toxic nanometer-sized crystals of silicon, often called "electronic ink." This "electronic ink" could produce inexpensive electronic devices with techniques that essentially print it onto inexpensive sheets of plastic.

"This process for producing electronics is almost like screen printing a number on a softball jersey," said Lance Wheeler, a University of Minnesota mechanical engineering Ph.D. student and lead author of the research.

But it's not quite that easy. Wheeler, Kortshagen and the rest of the research team developed a method to solve fundamental problems of silicon electronic inks.

First, there is the ubiquitous need of organic "soap-like" molecules, called ligands, that are needed to produce inks with a good shelf life, but these molecules cause detrimental residues in the films after printing. This leads to films with electrical properties too poor for electronic devices. Second, nanoparticles are often deliberately implanted with impurities, a process called "doping," to enhance their electrical properties.

In this new paper, researchers explain a new method to use an ionized gas, called nonthermal plasma, to not only produce silicon nanocrystals, but also to cover their surfaces with a layer of chlorine atoms. This surface layer of chlorine induces an interaction with many widely used solvents that allows production of stable silicon inks with excellent shelf life without the need for organic ligand molecules. In addition, the researchers discovered that these solvents lead to doping of films printed from their silicon inks, which gave them an electrical conductivity 1,000 times larger than un-doped silicon nanoparticle films. The researchers have a provisional patent on their findings.

To watch a research video of how silicon nanocrystals are synthesized in a plasma reactor, visit http://www.youtube.com/watch?v=5Un_HnOl6lQ&feature=youtu.be.

"What this research means is that we are one step closer to producing more pure and more stable electronic ink with non-toxic chemicals," Kortshagen said. "The bigger goal here is to find a way that this research can benefit everyone and make a real difference."

In addition to Kortshagen and Wheeler, members of the research team include Nathan R. Neale, a staff scientist at the National Renewable Energy Laboratory, and Ting Chen, a University of Minnesota chemical engineering and materials science Ph.D. student. The research was funded primarily by the Department of Energy Frontier Research Center for Advanced Solar Photophysics.

####

For more information, please click here

Contacts:
Brooke Dillon
University News Service

(612) 624-2801

Rhonda Zurn
College of Science and Engineering

(612) 626-7959

Copyright © University of Minnesota

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

To read the full research paper entitled, "Hypervalent Surface Interactions for Colloidal Stability and Doping of Silicon Nanocrystals," visit the Nature Communications website at:

Related News Press

News and information

An EPiQS Pursuit: Physicist Andrea Young is chosen to receive an Experimental Investigator award from the Moore Foundation May 28th, 2020

Study finds electrical fields can throw a curveball: Particle-scale phenomenon akin to the swerving of a curveball could allow selective separation of suspended nanomaterials May 26th, 2020

Surrey reveals its implantable biosensor that operates without batteries May 22nd, 2020

Researchers demonstrate transport of mechanical energy, even through damaged pathways: Topological pump can provide stability for communication technologies May 22nd, 2020

Possible Futures

An EPiQS Pursuit: Physicist Andrea Young is chosen to receive an Experimental Investigator award from the Moore Foundation May 28th, 2020

Study finds electrical fields can throw a curveball: Particle-scale phenomenon akin to the swerving of a curveball could allow selective separation of suspended nanomaterials May 26th, 2020

Visualization of functional components to characterize optimal composite electrodes May 22nd, 2020

Researchers demonstrate transport of mechanical energy, even through damaged pathways: Topological pump can provide stability for communication technologies May 22nd, 2020

Chip Technology

A stitch in time: How a quantum physicist invented new code from old tricks: Error suppression opens pathway to universal quantum computing May 22nd, 2020

Oriented hexagonal boron nitride foster new type of information carrier May 22nd, 2020

Observation of intervalley transitions can boost valleytronic science and technology: UC Riverside-led research shows these transitions can emit light May 15th, 2020

Scientists break the link between a quantum material's spin and orbital states: The advance opens a path toward a new generation of logic and memory devices based on orbitronics that could be 10,000 times faster than today's May 15th, 2020

Discoveries

Study finds electrical fields can throw a curveball: Particle-scale phenomenon akin to the swerving of a curveball could allow selective separation of suspended nanomaterials May 26th, 2020

MSU scientists solve half-century-old magnesium dimer mystery May 22nd, 2020

Researchers review advances in 3D printing of high-entropy alloys: SUTD collaborates with universities in Singapore and China to shine light on HEA manufacturing processes and inspire further research in this emerging field May 22nd, 2020

A stitch in time: How a quantum physicist invented new code from old tricks: Error suppression opens pathway to universal quantum computing May 22nd, 2020

Announcements

An EPiQS Pursuit: Physicist Andrea Young is chosen to receive an Experimental Investigator award from the Moore Foundation May 28th, 2020

Study finds electrical fields can throw a curveball: Particle-scale phenomenon akin to the swerving of a curveball could allow selective separation of suspended nanomaterials May 26th, 2020

Visualization of functional components to characterize optimal composite electrodes May 22nd, 2020

Researchers demonstrate transport of mechanical energy, even through damaged pathways: Topological pump can provide stability for communication technologies May 22nd, 2020

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters

Study finds electrical fields can throw a curveball: Particle-scale phenomenon akin to the swerving of a curveball could allow selective separation of suspended nanomaterials May 26th, 2020

Surrey reveals its implantable biosensor that operates without batteries May 22nd, 2020

Visualization of functional components to characterize optimal composite electrodes May 22nd, 2020

Researchers demonstrate transport of mechanical energy, even through damaged pathways: Topological pump can provide stability for communication technologies May 22nd, 2020

Energy

Oil & gas and automotive sectors will benefit from durable polymers with graphene nanotubes May 14th, 2020

Transporting energy through a single molecular nanowire: Why single wires are superior to bundles May 8th, 2020

Scientists have created new nanocomposite from gold and titanium oxide: Scientists use lasers and gold particles to turn titanium oxide into nanocomposite for photocatalysts May 8th, 2020

Water-splitting module a source of perpetual energy: ‘Artificial leaf’ concept inspires Rice University research into solar-powered fuel production May 4th, 2020

Solar/Photovoltaic

Twisting 2D materials uncovers their superpowers: Researchers have developed a completely new method for twisting atomically thin materials, paving the way for applications of 'twistronics' based on tunable 2D materials May 12th, 2020

Transporting energy through a single molecular nanowire: Why single wires are superior to bundles May 8th, 2020

Scientists have created new nanocomposite from gold and titanium oxide: Scientists use lasers and gold particles to turn titanium oxide into nanocomposite for photocatalysts May 8th, 2020

Water-splitting module a source of perpetual energy: ‘Artificial leaf’ concept inspires Rice University research into solar-powered fuel production May 4th, 2020

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project