Nanotechnology Now

Our NanoNews Digest Sponsors


Heifer International

Wikipedia Affiliate Button

Home > Press > Hardness, in depth: New NIST instrument allows researchers to test a material's mechanical properties more accurately than even before

Abstract:
In today's precision manufacturing environment, designers of products as diverse as car airbag sensors, computer microchips, drill bits and paint often need to know the mechanical properties of their materials' down to the nanometer scale. Scientists have now built a machine that sets a new standard of accuracy for testing one of those properties: a material's hardness, which is a measure of its resistance to bumps and scratches.

Hardness, in depth: New NIST instrument allows researchers to test a material's mechanical properties more accurately than even before

Washington, DC | Posted on July 30th, 2013

The new machine is called the Precision Nanoindentation Platform, or PNP. It was created in response to the need to test tiny novel devices, components and coatings in diverse industrial settings, said Douglas Smith, a physicist at the National Institute of Standards and Technology (NIST) in Gaithersburg, Maryland, who was part of the design team.

"In the material science community there are more and more components and materials that just don't exist on the macro scale," Smith said. His team tested the new instrument's performance on a synthetic polymer known as poly (methyl methacrylate), or PMMA, which is a lightweight plastic used as a thin film during fabrication processes in the semiconductor industry and employed as thick panels in large aquarium tanks or the spectator protectors that ring hockey rinks.

The work is published in the journal Review of Scientific Instruments, which is produced by AIP Publishing.

How the New Instrument Works

The existing generation of nanoindentation instruments work by bringing a shaft with a tiny, extremely hard tip into contact with a sample and measuring how the sample surface deforms in response to a known applied force. In the past, these instruments typically have been designed to measure the deformation via the displacement of the tip and shaft relative to their mount, but this can lead to measurement error, because the instrument frame can deform under stress or drift due to random thermal gradients in the environment.

To avoid these effects, Smith and his team designed the PNP to measure hardness via the actual penetration depth of the indenter tip into the specimen. They did this by placing two tiny tuning forks on either side of the indenter tip that resonate at 32 kilohertz, well above the limit of human hearing. When the tips of the tuning forks approach the surface of the specimen being measured, they feel a slight attraction that subtly shifts their resonant frequency without causing any detectable deformation of the specimen surface. By sensing this shift, the machine continuously monitors the actual position of the tip relative to the specimen surface—a process known as "top referencing" or "surface referencing."

The improvements built into the PNP allow it to test properties beyond the reach of previous nanoindentation devices, said Smith. For example, the machine can measure whether a material responds to pressure by deforming slowly over long periods of time, a process known as viscoelastic creep. "I don't want to say it is the best instrument out there, but it has certain advantages that we really like," said Smith.

While the PNP is state-of-the-art, don't expect to see it available for purchase any time soon. "We love the PNP," said Smith, but he added that it would be expensive and cantankerous to operate in an industrial setting. Instead, NIST scientists plan to use the machine to create standard reference materials and reference data for industry. Commercial instrument owners can then use these materials to calibrate the machines they use to characterize nano-scale components or ultra-thin coatings.

And for the rest of us? We can look forward to a new generation of ever more precisely built consumer products.

####

About American Institute of Physics
Presenting innovation in instrumentation and methods across disciplines rsi.aip.org/

For more information, please click here

Contacts:
Jason Socrates Bardi

240-535-4954

Copyright © American Institute of Physics

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

The article, "Development of a Precision Nanoindentation Platform" is authored by Bartosz K. Nowakowski, Douglas T. Smith, Stuart T. Smith, Luis F. Correa and Robert Cook. It appears in the journal Review of Scientific Instruments. See:

Related News Press

News and information

Starpharma initiates new DEP™ drug delivery program with AstraZeneca July 27th, 2016

Ageing can drive progress: Population ageing is likely to boost medicine, nanotechnology and robotics, but increase political risks July 27th, 2016

WSU researchers 'watch' crystal structure change in real time: Breakthrough made possible by new Argonne facility July 27th, 2016

Enhancing molecular imaging with light: New technology platform increases spectroscopic resolution by 4 fold July 27th, 2016

Laboratories

New nontoxic process promises larger ultrathin sheets of 2-D nanomaterials July 27th, 2016

New lithium-oxygen battery greatly improves energy efficiency, longevity: New chemistry could overcome key drawbacks of lithium-air batteries July 26th, 2016

An accelerated pipeline to open materials research: ORNL workflow system unites imaging, algorithms, and HPC to advance materials discovery and design July 24th, 2016

Scientists develop way to upsize nanostructures into light, flexible 3-D printed materials: Virginia Tech, Livermore National Lab researchers develop hierarchical 3-D printed metallic materials July 20th, 2016

Govt.-Legislation/Regulation/Funding/Policy

WSU researchers 'watch' crystal structure change in real time: Breakthrough made possible by new Argonne facility July 27th, 2016

Enhancing molecular imaging with light: New technology platform increases spectroscopic resolution by 4 fold July 27th, 2016

New nontoxic process promises larger ultrathin sheets of 2-D nanomaterials July 27th, 2016

New lithium-oxygen battery greatly improves energy efficiency, longevity: New chemistry could overcome key drawbacks of lithium-air batteries July 26th, 2016

Discoveries

WSU researchers 'watch' crystal structure change in real time: Breakthrough made possible by new Argonne facility July 27th, 2016

Enhancing molecular imaging with light: New technology platform increases spectroscopic resolution by 4 fold July 27th, 2016

New nontoxic process promises larger ultrathin sheets of 2-D nanomaterials July 27th, 2016

Ultrasensitive sensor using N-doped graphene July 26th, 2016

Announcements

Starpharma initiates new DEP™ drug delivery program with AstraZeneca July 27th, 2016

Ageing can drive progress: Population ageing is likely to boost medicine, nanotechnology and robotics, but increase political risks July 27th, 2016

WSU researchers 'watch' crystal structure change in real time: Breakthrough made possible by new Argonne facility July 27th, 2016

Enhancing molecular imaging with light: New technology platform increases spectroscopic resolution by 4 fold July 27th, 2016

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers

Ageing can drive progress: Population ageing is likely to boost medicine, nanotechnology and robotics, but increase political risks July 27th, 2016

WSU researchers 'watch' crystal structure change in real time: Breakthrough made possible by new Argonne facility July 27th, 2016

New nontoxic process promises larger ultrathin sheets of 2-D nanomaterials July 27th, 2016

Ultrasensitive sensor using N-doped graphene July 26th, 2016

Tools

WSU researchers 'watch' crystal structure change in real time: Breakthrough made possible by new Argonne facility July 27th, 2016

Enhancing molecular imaging with light: New technology platform increases spectroscopic resolution by 4 fold July 27th, 2016

Nanometrics Reports Second Quarter 2016 Financial Results July 26th, 2016

The NanoWizard® AFM from JPK is applied for interdisciplinary research at the University of South Australia for applications including smart wound healing and how plants can protect themselves from toxins July 26th, 2016

Industrial

Scientists move 1 step closer to creating an invisibility cloak July 15th, 2016

Yale researchers’ technology turns wasted heat into power June 27th, 2016

Industrial Nanotech, Inc. Signs Agreement With and Receives First Purchase Order from Major New Customer in China June 6th, 2016

GLOBALFOUNDRIES to Expand Presence in China with 300mm Fab in Chongqing: Company plans new manufacturing facility and additional design capabilities to serve customers in China May 31st, 2016

Research partnerships

New lithium-oxygen battery greatly improves energy efficiency, longevity: New chemistry could overcome key drawbacks of lithium-air batteries July 26th, 2016

Ultrasensitive sensor using N-doped graphene July 26th, 2016

Quantum drag:University of Iowa physicist says current in one iron magnetic sheet can create quantized spin waves in another, separate sheet July 22nd, 2016

Rice's 'antenna-reactor' catalysts offer best of both worlds: Technology marries light-harvesting nanoantennas to high-reaction-rate catalysts July 18th, 2016

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







Car Brands
Buy website traffic