Nanotechnology Now

Our NanoNews Digest Sponsors





Heifer International

Wikipedia Affiliate Button


android tablet pc

Home > Press > NYU-Poly Nano Scientists Reach the Holy Grail in Label-Free Cancer Marker Detection: Single Molecules

Abstract:
Just months after setting a record for detecting the smallest single virus in solution, researchers at the Polytechnic Institute of New York University (NYU-Poly) have announced a new breakthrough: They used a nano-enhanced version of their patented microcavity biosensor to detect a single cancer marker protein, which is one-sixth the size of the smallest virus, and even smaller molecules below the mass of all known markers. This achievement shatters the previous record, setting a new benchmark for the most sensitive limit of detection, and may significantly advance early disease diagnostics. Unlike current technology, which attaches a fluorescent molecule, or label, to the antigen to allow it to be seen, the new process detects the antigen without an interfering label.
Stephen Arnold, university professor of applied physics and member of the Othmer-Jacobs Department of Chemical and Biomolecular Engineering, published details of the achievement in Nano Letters, a publication of the American Chemical Society.

NYU-Poly Nano Scientists Reach the Holy Grail in Label-Free Cancer Marker Detection: Single Molecules

New York, NY | Posted on July 25th, 2013

In 2012, Arnold and his team were able to detect in solution the smallest known RNA virus, MS2, with a mass of 6 attograms. Now, with experimental work by postdoctoral fellow Venkata Dantham and former student David Keng, two proteins have been detected: a human cancer marker protein called Thyroglobulin, with a mass of just 1 attogram, and the bovine form of a common plasma protein, serum albumin, with a far smaller mass of 0.11 attogram. "An attogram is a millionth of a millionth of a millionth of a gram," said Arnold, "and we believe that our new limit of detection may be smaller than 0.01 attogram."

This latest milestone builds on a technique pioneered by Arnold and collaborators from NYU-Poly and Fordham University. In 2012, the researchers set the first sizing record by treating a novel biosensor with plasmonic gold nano-receptors, enhancing the electric field of the sensor and allowing even the smallest shifts in resonant frequency to be detected. Their plan was to design a medical diagnostic device capable of identifying a single virus particle in a point-of-care setting, without the use of special assay preparations.

At the time, the notion of detecting a single protein—phenomenally smaller than a virus—was set forth as the ultimate goal.

"Proteins run the body," explained Arnold. "When the immune system encounters virus, it pumps out huge quantities of antibody proteins, and all cancers generate protein markers. A test capable of detecting a single protein would be the most sensitive diagnostic test imaginable."

To the surprise of the researchers, examination of their nanoreceptor under a transmission electron microscope revealed that its gold shell surface was covered with random bumps roughly the size of a protein. Computer mapping and simulations created by Stephen Holler, once Arnold's student and now assistant professor of physics at Fordham University, showed that these irregularities generate their own highly reactive local sensitivity field extending out several nanometers, amplifying the capabilities of the sensor far beyond original predictions. "A virus is far too large to be aided in detection by this field," Arnold said. "Proteins are just a few nanometers across—exactly the right size to register in this space."

The implications of single protein detection are significant and may lay the foundation for improved medical therapeutics. Among other advances, Arnold and his colleagues posit that the ability to follow a signal in real time—to actually witness the detection of a single disease marker protein and track its movement—may yield new understanding of how proteins attach to antibodies.

Arnold named the novel method of label-free detection "whispering gallery-mode biosensing" because light waves in the system reminded him of the way that voices bounce around the whispering gallery under the dome of St. Paul's Cathedral in London. A laser sends light through a glass fiber to a detector. When a microsphere is placed against the fiber, certain wavelengths of light detour into the sphere and bounce around inside, creating a dip in the light that the detector receives. When a molecule like a cancer marker clings to a gold nanoshell attached to the microsphere, the microsphere's resonant frequency shifts by a measureable amount.

The research has been supported by a grant from the National Science Foundation (NSF). This summer, Arnold will begin the next stage of expanding the capacity for these biosensors. The NSF has awarded a new $200,000 grant to him in collaboration with University of Michigan professor Xudong Fan. The grant will support the construction of a multiplexed array of plasmonically enhanced resonators, which should allow a variety of protein to be identified in blood serum within minutes.

The publication in Nano Letters marks the 100th journal-paper published since the 1978 founding of NYU-Poly's Microparticle Photophysics Laboratory for BioPhotonics, directed by Arnold.

####

For more information, please click here

Contacts:
Kathleen Hamilton

718-260-3792

Copyright © Polytechnic Institute of New York University

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

NanoTechnology for Defense (NT4D) October 22nd, 2014

Mechanism behind nature's sparkles revealed October 22nd, 2014

TARA Biosystems and Harris & Harris Group Form Company to Improve Safety and Efficacy of New Therapies October 22nd, 2014

Researchers patent a nanofluid that improves heat conductivity October 22nd, 2014

Imaging

Special UO microscope captures defects in nanotubes: University of Oregon chemists provide a detailed view of traps that disrupt energy flow, possibly pointing toward improved charge-carrying devices October 21st, 2014

Super stable garnet ceramics may be ideal for high-energy lithium batteries October 21st, 2014

Detecting Cancer Earlier is Goal of Rutgers-Developed Medical Imaging Technology: Rare earth nanocrystals and infrared light can reveal small cancerous tumors and cardiovascular lesions October 21st, 2014

New Grand ARM Transmission Electron Microscope Offers Highest Commercially-Available Atomic Resolution of 63 Picometers October 17th, 2014

Govt.-Legislation/Regulation/Funding/Policy

Materials for the next generation of electronics and photovoltaics: MacArthur Fellow develops new uses for carbon nanotubes October 21st, 2014

Special UO microscope captures defects in nanotubes: University of Oregon chemists provide a detailed view of traps that disrupt energy flow, possibly pointing toward improved charge-carrying devices October 21st, 2014

Super stable garnet ceramics may be ideal for high-energy lithium batteries October 21st, 2014

Could I squeeze by you? Ames Laboratory scientists model molecular movement within narrow channels of mesoporous nanoparticles October 21st, 2014

Nanomedicine

TARA Biosystems and Harris & Harris Group Form Company to Improve Safety and Efficacy of New Therapies October 22nd, 2014

‘Designer’ nanodevice could improve treatment options for cancer sufferers October 22nd, 2014

Detecting Cancer Earlier is Goal of Rutgers-Developed Medical Imaging Technology: Rare earth nanocrystals and infrared light can reveal small cancerous tumors and cardiovascular lesions October 21st, 2014

Design of micro and nanoparticles to improve treatments for Alzheimers and Parkinsons: At the Faculty of Pharmacy of the UPV/EHU-University of the Basque Country encapsulation techniques are being developed to deliver correctly and effectively certain drugs October 20th, 2014

Discoveries

Mechanism behind nature's sparkles revealed October 22nd, 2014

Researchers patent a nanofluid that improves heat conductivity October 22nd, 2014

‘Designer’ nanodevice could improve treatment options for cancer sufferers October 22nd, 2014

Detecting Cancer Earlier is Goal of Rutgers-Developed Medical Imaging Technology: Rare earth nanocrystals and infrared light can reveal small cancerous tumors and cardiovascular lesions October 21st, 2014

Announcements

NanoTechnology for Defense (NT4D) October 22nd, 2014

Mechanism behind nature's sparkles revealed October 22nd, 2014

TARA Biosystems and Harris & Harris Group Form Company to Improve Safety and Efficacy of New Therapies October 22nd, 2014

Researchers patent a nanofluid that improves heat conductivity October 22nd, 2014

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals

Mechanism behind nature's sparkles revealed October 22nd, 2014

Special UO microscope captures defects in nanotubes: University of Oregon chemists provide a detailed view of traps that disrupt energy flow, possibly pointing toward improved charge-carrying devices October 21st, 2014

Could I squeeze by you? Ames Laboratory scientists model molecular movement within narrow channels of mesoporous nanoparticles October 21st, 2014

Detecting Cancer Earlier is Goal of Rutgers-Developed Medical Imaging Technology: Rare earth nanocrystals and infrared light can reveal small cancerous tumors and cardiovascular lesions October 21st, 2014

NanoNews-Digest
The latest news from around the world, FREE





  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More














ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2014 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE