Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > New NIST nanoscale indenter takes novel approach to measuring surface properties

Good vibrations: Close-up image shows the tip of the new NIST nanoscale indenter flanked by two tuning forks that provide a stable, noncontact reference relative to the specimen, a piece of single-crystal silicon. Using a piar of tuning forks allows the system to compensate for any tilt.

Credit: Nowakowski/NIST
Good vibrations: Close-up image shows the tip of the new NIST nanoscale indenter flanked by two tuning forks that provide a stable, noncontact reference relative to the specimen, a piece of single-crystal silicon. Using a piar of tuning forks allows the system to compensate for any tilt.

Credit: Nowakowski/NIST

Abstract:
Researchers from the National Institute of Standards and Technology (NIST) and the University of North Carolina have demonstrated a new design for an instrument, a "instrumented nanoscale indenter," that makes sensitive measurements of the mechanical properties of thin films -- ranging from auto body coatings to microelectronic devices -- and biomaterials. The NIST instrument uses a unique technique for precisely measuring the depth of the indentation in a test surface with no contact of the surface other than the probe tip itself.*

New NIST nanoscale indenter takes novel approach to measuring surface properties

Gaithersburg, MD | Posted on July 24th, 2013

Nanoindenter head

Indenters have a long history in materials research. Johan August Brinell devised one of the first versions in 1900. The concept is to drop or ram something hard onto the test material and gauge the material's hardness by the depth of the dent. This is fine for railway steel, but modern technology has brought more challenging measurements: the stiffness of micromechanical sensors used in auto airbags, the hardness of thin coatings on tool bits, the elasticity of thin biological membranes. These require precision measurements of depth in terms of nanometers and force in terms of micronewtons.

Instead of dents in metal, says NIST's Douglas Smith, "We are trying to get the most accurate measurement possible of how far the indenter tip penetrates into the surface of the specimen, and how much force it took to push it in that far. We record this continuously. It's called 'instrumented indentation testing'."

A major challenge, Smith says, is that at the nanoscale you need to know exactly where the surface of the test specimen is relative to the indenter's tip. Some commercial instruments do this by touching the surface with a reference part of the instrument that is a known distance from the tip, but this introduces additional problems. "For example, if you want to look at creep in polymer -- which is one thing that our instrument is particularly good at—that reference point itself is going to be creeping into the polymer just under its own contact force. That's an error you don't know and can't correct for," says Smith.

The NIST solution is a touchless surface detector that uses a pair of tiny quartz tuning forks -- the sort used to keep time in most wrist watches. When the tuning forks get close to the test surface, the influence of the nearby mass changes their frequency -- not much, but enough. The nanoindenter uses that frequency shift to "lock" the position of the indenter mechanism at a fixed distance from the test surface, but without exerting any detectable force on the surface itself.

"The only significant interaction we want is between the indenter and the specimen," says Smith, "or at least, to be constant and not deforming the surface. This is a significant improvement over the commercial instruments."

The NIST nanoindenter can apply forces up to 150 millinewtons, taking readings a thousand times a second, with an uncertainty lower than 2 micronewtons, and while measuring tip penetration up to 10 micrometers to within about 0.4 nanometers. All of this in done in a way that can be traceably calibrated against basic SI units for force and displacement in a routine manner.

The instrument is well suited for high-precision measurements of hardness, elasticity and creep and similar properties for a wide range of materials, including often difficult to measure soft materials such as polymer films, says Smith, but one of its primary uses will be in the development of reference materials that can be used to calibrate other instrumented indenters. "There still are no NIST standard reference materials for this class of instruments because we wanted to have an instrument that was better than the commercial instruments for doing that," Smith explains.

*B.K. Nowakowski, D.T. Smith, S.T. Smith, L.F. Correa and R F. Cook. Development of a precision nanoindentation platform. Review of Scientific Instruments, 84(7), 075110, DOI: 10-1063/1.4811195, (2013). Published online July 18, 2013.

####

For more information, please click here

Contacts:
Michael Baum

301-975-2763

Copyright © National Institute of Standards and Technology (NIST)

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Nature paper by Schlumberger researchers used photothermal based nanoscale IR spectroscopy to analyze heterogeneous process of petroleum generation January 23rd, 2018

New filters could enable manufacturers to perform highly-selective chemical separation January 23rd, 2018

Researchers use sound waves to advance optical communication January 22nd, 2018

Piecework at the nano assembly line: Electric fields drive nano-motors a 100,000 times faster than previous methods January 22nd, 2018

Laboratories

Thanks for the memory: NIST takes a deep look at memristors January 20th, 2018

Laboratory Management Web Application Goes Nationwide January 9th, 2018

NRL improves optical efficiency in nanophotonic devices January 4th, 2018

Tweaking quantum dots powers-up double-pane solar windows: Engineered quantum dots could bring down the cost of solar electricity January 2nd, 2018

Thin films

Particle size matters for porous building blocks: Rice University scientists find porous nanoparticles get tougher under pressure, but not when assembled December 19th, 2017

MIPT scientists revisit optical constants of ultrathin gold films October 20th, 2017

Rice University chemists make laser-induced graphene from wood July 31st, 2017

Graduate Students from Across the Country Attend Hands-on NanoCamp: Prominent scientists Warren Oliver, Ph.D., and George Pharr, Ph.D., presented a weeklong NanoCamp for hand-picked graduate students across the United States July 26th, 2017

Govt.-Legislation/Regulation/Funding/Policy

New filters could enable manufacturers to perform highly-selective chemical separation January 23rd, 2018

Researchers use sound waves to advance optical communication January 22nd, 2018

Piecework at the nano assembly line: Electric fields drive nano-motors a 100,000 times faster than previous methods January 22nd, 2018

Thanks for the memory: NIST takes a deep look at memristors January 20th, 2018

Discoveries

Nature paper by Schlumberger researchers used photothermal based nanoscale IR spectroscopy to analyze heterogeneous process of petroleum generation January 23rd, 2018

Researchers use sound waves to advance optical communication January 22nd, 2018

Piecework at the nano assembly line: Electric fields drive nano-motors a 100,000 times faster than previous methods January 22nd, 2018

Thanks for the memory: NIST takes a deep look at memristors January 20th, 2018

Announcements

Nature paper by Schlumberger researchers used photothermal based nanoscale IR spectroscopy to analyze heterogeneous process of petroleum generation January 23rd, 2018

New filters could enable manufacturers to perform highly-selective chemical separation January 23rd, 2018

Researchers use sound waves to advance optical communication January 22nd, 2018

Piecework at the nano assembly line: Electric fields drive nano-motors a 100,000 times faster than previous methods January 22nd, 2018

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers

Nature paper by Schlumberger researchers used photothermal based nanoscale IR spectroscopy to analyze heterogeneous process of petroleum generation January 23rd, 2018

New filters could enable manufacturers to perform highly-selective chemical separation January 23rd, 2018

Researchers use sound waves to advance optical communication January 22nd, 2018

Piecework at the nano assembly line: Electric fields drive nano-motors a 100,000 times faster than previous methods January 22nd, 2018

Tools

Nature paper by Schlumberger researchers used photothermal based nanoscale IR spectroscopy to analyze heterogeneous process of petroleum generation January 23rd, 2018

Piecework at the nano assembly line: Electric fields drive nano-motors a 100,000 times faster than previous methods January 22nd, 2018

Leti to Demo New Curving Technology at Photonics West that Improves Performance of Optical Components January 18th, 2018

Nanowrinkles could save billions in shipping and aquaculture Surfaces inspired by carnivorous plants delay degradation by marine fouling January 17th, 2018

Research partnerships

Ultra-thin memory storage device paves way for more powerful computing January 17th, 2018

New catalyst for hydrogen production is a step toward clean fuel: Carbon-based nanocomposite with embedded metal ions yields impressive performance as catalyst for electrolysis of water to generate hydrogen January 16th, 2018

New era in high field superconducting magnets – opening new frontiers in science, nanotechnology and materials discovery January 9th, 2018

Touchy nanotubes work better when clean: Rice, Swansea scientists show that decontaminating nanotubes can simplify nanoscale devices January 4th, 2018

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project