Nanotechnology Now

Our NanoNews Digest Sponsors





Heifer International

Wikipedia Affiliate Button


android tablet pc

Home > Press > New NIST nanoscale indenter takes novel approach to measuring surface properties

Good vibrations: Close-up image shows the tip of the new NIST nanoscale indenter flanked by two tuning forks that provide a stable, noncontact reference relative to the specimen, a piece of single-crystal silicon. Using a piar of tuning forks allows the system to compensate for any tilt.

Credit: Nowakowski/NIST
Good vibrations: Close-up image shows the tip of the new NIST nanoscale indenter flanked by two tuning forks that provide a stable, noncontact reference relative to the specimen, a piece of single-crystal silicon. Using a piar of tuning forks allows the system to compensate for any tilt.

Credit: Nowakowski/NIST

Abstract:
Researchers from the National Institute of Standards and Technology (NIST) and the University of North Carolina have demonstrated a new design for an instrument, a "instrumented nanoscale indenter," that makes sensitive measurements of the mechanical properties of thin films -- ranging from auto body coatings to microelectronic devices -- and biomaterials. The NIST instrument uses a unique technique for precisely measuring the depth of the indentation in a test surface with no contact of the surface other than the probe tip itself.*

New NIST nanoscale indenter takes novel approach to measuring surface properties

Gaithersburg, MD | Posted on July 24th, 2013

Nanoindenter head

Indenters have a long history in materials research. Johan August Brinell devised one of the first versions in 1900. The concept is to drop or ram something hard onto the test material and gauge the material's hardness by the depth of the dent. This is fine for railway steel, but modern technology has brought more challenging measurements: the stiffness of micromechanical sensors used in auto airbags, the hardness of thin coatings on tool bits, the elasticity of thin biological membranes. These require precision measurements of depth in terms of nanometers and force in terms of micronewtons.

Instead of dents in metal, says NIST's Douglas Smith, "We are trying to get the most accurate measurement possible of how far the indenter tip penetrates into the surface of the specimen, and how much force it took to push it in that far. We record this continuously. It's called 'instrumented indentation testing'."

A major challenge, Smith says, is that at the nanoscale you need to know exactly where the surface of the test specimen is relative to the indenter's tip. Some commercial instruments do this by touching the surface with a reference part of the instrument that is a known distance from the tip, but this introduces additional problems. "For example, if you want to look at creep in polymer -- which is one thing that our instrument is particularly good at—that reference point itself is going to be creeping into the polymer just under its own contact force. That's an error you don't know and can't correct for," says Smith.

The NIST solution is a touchless surface detector that uses a pair of tiny quartz tuning forks -- the sort used to keep time in most wrist watches. When the tuning forks get close to the test surface, the influence of the nearby mass changes their frequency -- not much, but enough. The nanoindenter uses that frequency shift to "lock" the position of the indenter mechanism at a fixed distance from the test surface, but without exerting any detectable force on the surface itself.

"The only significant interaction we want is between the indenter and the specimen," says Smith, "or at least, to be constant and not deforming the surface. This is a significant improvement over the commercial instruments."

The NIST nanoindenter can apply forces up to 150 millinewtons, taking readings a thousand times a second, with an uncertainty lower than 2 micronewtons, and while measuring tip penetration up to 10 micrometers to within about 0.4 nanometers. All of this in done in a way that can be traceably calibrated against basic SI units for force and displacement in a routine manner.

The instrument is well suited for high-precision measurements of hardness, elasticity and creep and similar properties for a wide range of materials, including often difficult to measure soft materials such as polymer films, says Smith, but one of its primary uses will be in the development of reference materials that can be used to calibrate other instrumented indenters. "There still are no NIST standard reference materials for this class of instruments because we wanted to have an instrument that was better than the commercial instruments for doing that," Smith explains.

*B.K. Nowakowski, D.T. Smith, S.T. Smith, L.F. Correa and R F. Cook. Development of a precision nanoindentation platform. Review of Scientific Instruments, 84(7), 075110, DOI: 10-1063/1.4811195, (2013). Published online July 18, 2013.

####

For more information, please click here

Contacts:
Michael Baum

301-975-2763

Copyright © National Institute of Standards and Technology (NIST)

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Graphene may be key to leap in supercapacitor performance August 20th, 2014

Newly-Developed Nanobiosensor Quickly Diagnoses Cancer August 20th, 2014

Ultrasonic Waves Applied in Production of Graphene Nanosheets August 20th, 2014

The channel that relaxes DNA: Relaxing DNA strands by using nano-channels: Instructions for use August 20th, 2014

Laboratories

Promising Ferroelectric Materials Suffer From Unexpected Electric Polarizations: Brookhaven Lab scientists find surprising locked charge polarizations that impede performance in next-gen materials that could otherwise revolutionize data-driven devices August 18th, 2014

Research of Empa scientists on the cover of "Nature": Synthesis of structurally pure carbon nanotubes using molecular seeds August 7th, 2014

FEI Reports New Advances in Neuroscience in Collaboration with NIH: Using cryo-electron microscopy, researchers determine the structural mechanism of glutamate receptors – an important insight to the brain’s memory formation and learning August 4th, 2014

Thin films

An Inkjet-Printed Field-Effect Transistor for Label-Free Biosensing August 11th, 2014

Advanced thin-film technique could deliver long-lasting medication: Nanoscale, biodegradable drug-delivery method could provide a year or more of steady doses August 6th, 2014

Govt.-Legislation/Regulation/Funding/Policy

Success in Intracellular Imaging of Cesium Distribution in Plants Used for Cesium Absorption August 19th, 2014

Electrical engineers take major step toward photonic circuits: Team invents non-metallic metamaterial that enables them to 'compress' and contain light August 19th, 2014

Promising Ferroelectric Materials Suffer From Unexpected Electric Polarizations: Brookhaven Lab scientists find surprising locked charge polarizations that impede performance in next-gen materials that could otherwise revolutionize data-driven devices August 18th, 2014

Novel chip-based platform could simplify measurements of single molecules: A nanopore-gated optofluidic chip combines electrical and optical measurements of single molecules onto a single platform August 14th, 2014

Discoveries

Newly-Developed Nanobiosensor Quickly Diagnoses Cancer August 20th, 2014

Ultrasonic Waves Applied in Production of Graphene Nanosheets August 20th, 2014

The channel that relaxes DNA: Relaxing DNA strands by using nano-channels: Instructions for use August 20th, 2014

Electrical engineers take major step toward photonic circuits: Team invents non-metallic metamaterial that enables them to 'compress' and contain light August 19th, 2014

Announcements

Graphene may be key to leap in supercapacitor performance August 20th, 2014

Newly-Developed Nanobiosensor Quickly Diagnoses Cancer August 20th, 2014

Ultrasonic Waves Applied in Production of Graphene Nanosheets August 20th, 2014

The channel that relaxes DNA: Relaxing DNA strands by using nano-channels: Instructions for use August 20th, 2014

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals

Newly-Developed Nanobiosensor Quickly Diagnoses Cancer August 20th, 2014

Ultrasonic Waves Applied in Production of Graphene Nanosheets August 20th, 2014

The channel that relaxes DNA: Relaxing DNA strands by using nano-channels: Instructions for use August 20th, 2014

Сalculations with Nanoscale Smart Particles August 19th, 2014

Tools

Oxford Instruments Asylum Research Receives the 2014 Microscopy Today Innovation Award for blueDrive Photothermal Excitation August 18th, 2014

Laser makes microscopes way cooler: Cooling a nanowire probe with a laser could lead to substantial improvements in the sensitivity of atomic force probe microscopes August 15th, 2014

JPK reports on the use of AFM and advanced fluorescence microscopy at the University of Freiburg August 13th, 2014

Phasefocus reports on the use of their high-precision Lens Profiler for measuring contact lens thickness at the Brien Holden Vision Institute in Sydney, Australia August 13th, 2014

Research partnerships

Сalculations with Nanoscale Smart Particles August 19th, 2014

Promising Ferroelectric Materials Suffer From Unexpected Electric Polarizations: Brookhaven Lab scientists find surprising locked charge polarizations that impede performance in next-gen materials that could otherwise revolutionize data-driven devices August 18th, 2014

Nano Bonds Increase Raw Strength of Fireproof Concretes August 18th, 2014

Production of Toxic Ion Nanosorbents with High Sorption Capacity in Iran August 17th, 2014

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More














ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2014 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE