Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > Microorganisms found in salt flats could offer new path to green hydrogen fuel

The pink color of salt lakes is caused by salt-loving microorganisms, called halobacteria.
The pink color of salt lakes is caused by salt-loving microorganisms, called halobacteria.

Abstract:
A protein found in the membranes of ancient microorganisms that live in desert salt flats could offer a new way of using sunlight to generate environmentally friendly hydrogen fuel, according to a new study by researchers at the U.S. Department of Energy's Argonne National Laboratory.

Microorganisms found in salt flats could offer new path to green hydrogen fuel

Argonne, IL | Posted on July 22nd, 2013

Argonne nanoscientist Elena Rozhkova and her colleagues combined a pigment called bacteriorhodopsin with semiconducting nanoparticles to create a system that uses light to spark a catalytic process that creates hydrogen fuel.

Scientists have been aware of the potential of titanium dioxide nanoparticles for light-based reactions since the early 1970s, when Japanese researchers discovered that a titanium dioxide electrode exposed to bright ultraviolet light could split water molecules in a phenomenon that came to be known as the Honda-Fujishima effect. Since then, scientists have made continuous efforts to extend the light reactivity of titanium dioxide photocatalysts into the visible part of the spectrum. The promise of these photocatalysts prompted scientists to experiment with different modifications to their basic chemistry in hope of making the reaction more efficient, Rozhkova said.

"Titanium dioxide alone reacts with ultraviolet light, but not with visible light, so we used biological photoreactive molecules as a building block to create a hybrid system that could use visible light efficiently," Rozhkova said.

Rozhkova and her colleagues turned to bacteriorhodopsin - which is responsible for the unusual purple color of a number of salt flats in California and Nevada - because it uses sunlight as an energy source that allows it to act as a "proton pump." Proton pumps are proteins that typically straddle a cellular membrane and transfer protons from inside the cell to the extracellular space.

In the Argonne system, the protons provided by the bacteriorhodopsin are combined with free electrons at small platinum sites interspersed in the titanium dioxide matrix. "The platinum nanoparticles are essential for creating a distinct spot for the production of the hydrogen molecule," said Peng Wang, an Argonne postdoctoral researcher in Rozhkova's group at Argonne's Center for Nanoscale Materials.

This bio-assisted hybrid photocatalyst outperforms many other similar systems in hydrogen generation and could be a good candidate for fabrication of green energy devices that consume virtually infinite sources - salt water and sunlight.

An article based on the study was recently published in Nanoletters. The work was performed at Argonne's Center for Nanoscale Materials, which is supported by the U.S. Department of Energy's Office of Science.

####

About Argonne National Laboratory
Argonne National Laboratory seeks solutions to pressing national problems in science and technology. The nation's first national laboratory, Argonne conducts leading-edge basic and applied scientific research in virtually every scientific discipline. Argonne researchers work closely with researchers from hundreds of companies, universities, and federal, state and municipal agencies to help them solve their specific problems, advance America's scientific leadership and prepare the nation for a better future. With employees from more than 60 nations, Argonne is managed by UChicago Argonne, LLC for the U.S. Department of Energy's Office of Science.

The Center for Nanoscale Materials at Argonne National Laboratory is one of the five DOE Nanoscale Science Research Centers (NSRCs), premier national user facilities for interdisciplinary research at the nanoscale, supported by the DOE Office of Science. Together, the NSRCs comprise a suite of complementary facilities that provide researchers with state-of-the-art capabilities to fabricate, process, characterize and model nanoscale materials, and constitute the largest infrastructure investment of the National Nanotechnology Initiative. The NSRCs are located at DOE’s Argonne, Brookhaven, Lawrence Berkeley, Oak Ridge and Sandia and Los Alamos National Laboratories.

For more information, please click here

Contacts:
Jared Sagoff

630-252-5549

Copyright © Argonne National Laboratory

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Enhancing the sensing capabilities of diamonds with quantum properties: A simple method can give diamonds the special properties needed for quantum applications such as sensing magnetic fields September 24th, 2017

Quantum twisted Loong confirms the physical reality of wavefunctions September 23rd, 2017

Application of air-sensitive semiconductors in nanoelectronics: 2-D semiconductor gallium selenide in encapsulated nanoelectronic devices September 22nd, 2017

Researchers set time limit for ultrafast perovskite solar cells September 22nd, 2017

Laboratories

Copper catalyst yields high efficiency CO2-to-fuels conversion: Berkeley Lab scientists discover critical role of nanoparticle transformation September 20th, 2017

Solar-to-fuel system recycles CO2 to make ethanol and ethylene: Berkeley Lab advance is first demonstration of efficient, light-powered production of fuel via artificial photosynthesis September 19th, 2017

New insights into nanocrystal growth in liquid: Understanding process that creates complex crystals important for energy applications September 14th, 2017

Ames Laboratory scientists move graphene closer to transistor applications August 30th, 2017

Govt.-Legislation/Regulation/Funding/Policy

Quantum twisted Loong confirms the physical reality of wavefunctions September 23rd, 2017

DNA triggers shape-shifting in hydrogels, opening a new way to make 'soft robots' September 21st, 2017

Copper catalyst yields high efficiency CO2-to-fuels conversion: Berkeley Lab scientists discover critical role of nanoparticle transformation September 20th, 2017

Solar-to-fuel system recycles CO2 to make ethanol and ethylene: Berkeley Lab advance is first demonstration of efficient, light-powered production of fuel via artificial photosynthesis September 19th, 2017

Discoveries

Quantum twisted Loong confirms the physical reality of wavefunctions September 23rd, 2017

Application of air-sensitive semiconductors in nanoelectronics: 2-D semiconductor gallium selenide in encapsulated nanoelectronic devices September 22nd, 2017

Researchers set time limit for ultrafast perovskite solar cells September 22nd, 2017

DNA triggers shape-shifting in hydrogels, opening a new way to make 'soft robots' September 21st, 2017

Announcements

Enhancing the sensing capabilities of diamonds with quantum properties: A simple method can give diamonds the special properties needed for quantum applications such as sensing magnetic fields September 24th, 2017

Quantum twisted Loong confirms the physical reality of wavefunctions September 23rd, 2017

Application of air-sensitive semiconductors in nanoelectronics: 2-D semiconductor gallium selenide in encapsulated nanoelectronic devices September 22nd, 2017

Researchers set time limit for ultrafast perovskite solar cells September 22nd, 2017

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers

Enhancing the sensing capabilities of diamonds with quantum properties: A simple method can give diamonds the special properties needed for quantum applications such as sensing magnetic fields September 24th, 2017

Quantum twisted Loong confirms the physical reality of wavefunctions September 23rd, 2017

Application of air-sensitive semiconductors in nanoelectronics: 2-D semiconductor gallium selenide in encapsulated nanoelectronic devices September 22nd, 2017

Researchers set time limit for ultrafast perovskite solar cells September 22nd, 2017

Energy

Researchers set time limit for ultrafast perovskite solar cells September 22nd, 2017

Copper catalyst yields high efficiency CO2-to-fuels conversion: Berkeley Lab scientists discover critical role of nanoparticle transformation September 20th, 2017

Solar-to-fuel system recycles CO2 to make ethanol and ethylene: Berkeley Lab advance is first demonstration of efficient, light-powered production of fuel via artificial photosynthesis September 19th, 2017

Insect eyes inspire new solar cell design from Stanford August 31st, 2017

Fuel Cells

Hydrogen power moves a step closer: Physicists are developing methods of creating renewable fuel from water using quantum technology September 15th, 2017

More durable, less expensive fuel cells: University of Delaware researchers have developed a new technology that could speed up the commercialization of fuel cell vehicles September 5th, 2017

Engineers pioneer platinum shell formation process – and achieve first-ever observation August 11th, 2017

Argonne National Laboratory’s Continuous ALD Technology Licensed Exclusively to Forge Nano July 7th, 2017

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project