Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > Paper-thin e-skin responds to touch, holds promise for sensory robotics and interactive environments

In this artistic illustration of an interactive e-skin device, the intensity of the emitted light corresponds to how hard the surface is pressed.Illustration by Ali Javey and Chuan Wang
In this artistic illustration of an interactive e-skin device, the intensity of the emitted light corresponds to how hard the surface is pressed.

Illustration by Ali Javey and Chuan Wang

Abstract:
A new milestone by engineers at the University of California, Berkeley, can help robots become more touchy-feely, literally.



This video shows the interactive e-skin in action. (Video by Ali Javey and Chuan Wang)

Paper-thin e-skin responds to touch, holds promise for sensory robotics and interactive environments

Berkeley, CA | Posted on July 21st, 2013

A research team led by Ali Javey, UC Berkeley associate professor of electrical engineering and computer sciences, has created the first user-interactive sensor network on flexible plastic. The new electronic skin, or e-skin, responds to touch by instantly lighting up. The more intense the pressure, the brighter the light it emits.



"We are not just making devices; we are building systems," said Javey, who also has an appointment as a faculty scientist at the Lawrence Berkeley National Laboratory. "With the interactive e-skin, we have demonstrated an elegant system on plastic that can be wrapped around different objects to enable a new form of human-machine interfacing."



This latest e-skin, described in a paper to be published online this Sunday, July 21, in the journal Nature Materials, builds on Javey's earlier work using semiconductor nanowire transistors layered on top of thin rubber sheets.



In addition to giving robots a finer sense of touch, the engineers believe the new e-skin technology could also be used to create things like wallpapers that double as touchscreen displays and dashboard laminates that allow drivers to adjust electronic controls with the wave of a hand.



"I could also imagine an e-skin bandage applied to an arm as a health monitor that continuously checks blood pressure and pulse rates," said study co-lead author Chuan Wang, who conducted the work as a post-doctoral researcher in Javey's lab at UC Berkeley.



The experimental samples of the latest e-skin measure 16-by-16 pixels. Within each pixel sits a transistor, an organic LED and a pressure sensor.



"Integrating sensors into a network is not new, but converting the data obtained into something interactive is the breakthrough," said Wang, who is now an assistant professor of electrical and computer engineering at Michigan State University. "And unlike the stiff touchscreens on iPhones, computer monitors and ATMs, the e-skin is flexible and can be easily laminated on any surface."



To create the pliable e-skin, the engineers cured a thin layer of polymer on top of a silicon wafer. Once the plastic hardened, they could run the material through fabrication tools already in use in the semiconductor industry to layer on the electronic components. After the electronics were stacked, they simply peeled off the plastic from the silicon base, leaving a freestanding film with a sensor network embedded in it.



"The electronic components are all vertically integrated, which is a fairly sophisticated system to put onto a relatively cheap piece of plastic," said Javey. "What makes this technology potentially easy to commercialize is that the process meshes well with existing semiconductor machinery."



Javey's lab is now in the process of engineering the e-skin sensors to respond to temperature and light as well as pressure.



UC Berkeley co-authors on this study are David Hwang, Zhibin Yu and Kuniharu Takei, all of whom have joint appointments at the Berkeley Lab. Additional study co-authors are Junwoo Park, Teresa Chen and Biwu Ma from the Berkeley Lab.

The Defense Advanced Research Projects Agency and the Department of Energy helped support this research.

####

For more information, please click here

Contacts:
Sarah Yang
Media Relations

(510) 643-7741

Ali Javey

(510) 643-7263

Chuan Wang

(517) 432-4309

Copyright © University of California, Berkeley

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

Engineers make artificial skin out of nanowires (UC Berkeley press release)

Related News Press

News and information

Argon is not the 'dope' for metallic hydrogen March 24th, 2017

Promising results obtained with a new electrocatalyst that reduces the need for platinum: Researchers from Aalto University have succeeded in manufacturing electrocatalysts used for storing electric energy with one-hundredth of the amount of platinum that is usually needed March 24th, 2017

Leti Presents Advances in Propagation Modeling and Antenna Design for mmWave Spectrum: Paper Is One of 15 that Leti Presented at European Conference on Antennas and Propagation March 19-24 March 23rd, 2017

Rice U. refines filters for greener natural gas: New study defines best materials for carbon capture, methane selectivity March 23rd, 2017

Govt.-Legislation/Regulation/Funding/Policy

Argon is not the 'dope' for metallic hydrogen March 24th, 2017

Nanobiotix: The Independent Data Monitoring Committee Recommends the Continuation of the Ongoing Phase II/III Trial of NBTXR3 in Soft Tissue Sarcoma March 23rd, 2017

Rice U. refines filters for greener natural gas: New study defines best materials for carbon capture, methane selectivity March 23rd, 2017

Artificial photosynthesis steps into the light: Rice University lab turns transition metals into practical catalyst for solar, other applications March 23rd, 2017

Sensors

UC researchers use gold coating to control luminescence of nanowires: University of Cincinnati physicists manipulate nanowire semiconductors in pursuit of making electronics smaller, faster and cheaper March 17th, 2017

Optical fingerprint can reveal pollutants in the air: Researchers at Chalmers University of Technology have proposed a new, sophisticated method of detecting molecules with sensors based on ultra-thin nanomaterials March 15th, 2017

New optical nanosensor improves brain mapping accuracy, opens way for more applications: Potassium-sensitive fluorescence-imaging method shines light on chemical activity within the brain March 3rd, 2017

Smart multi-layered magnetic material acts as an electric switch: New study reveals characteristic of islands of magnetic metals between vacuum gaps, displaying tunnelling electric current March 1st, 2017

Discoveries

Argon is not the 'dope' for metallic hydrogen March 24th, 2017

Promising results obtained with a new electrocatalyst that reduces the need for platinum: Researchers from Aalto University have succeeded in manufacturing electrocatalysts used for storing electric energy with one-hundredth of the amount of platinum that is usually needed March 24th, 2017

Rice U. refines filters for greener natural gas: New study defines best materials for carbon capture, methane selectivity March 23rd, 2017

Artificial photosynthesis steps into the light: Rice University lab turns transition metals into practical catalyst for solar, other applications March 23rd, 2017

Announcements

Argon is not the 'dope' for metallic hydrogen March 24th, 2017

Promising results obtained with a new electrocatalyst that reduces the need for platinum: Researchers from Aalto University have succeeded in manufacturing electrocatalysts used for storing electric energy with one-hundredth of the amount of platinum that is usually needed March 24th, 2017

Rice U. refines filters for greener natural gas: New study defines best materials for carbon capture, methane selectivity March 23rd, 2017

Artificial photosynthesis steps into the light: Rice University lab turns transition metals into practical catalyst for solar, other applications March 23rd, 2017

Military

Graphene sheets capture cells efficiently: New method could enable pinpoint diagnostics on individual blood cells March 3rd, 2017

Bioinspired process makes materials light, robust, programmable at nano- to macro-scale: Ultralight web of silk nano fibers withstands load 4,000 times its weight February 28th, 2017

'Lossless' metamaterial could boost efficiency of lasers and other light-based devices February 20th, 2017

Engineers shrink microscope to dime-sized device February 17th, 2017

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project