Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > NASA Engineer Achieves Another Milestone in Emerging Nanotechnology

Optics engineer John Hagopian works with a nanotube material sample in this file photograph from NASA's Goddard Space Flight Center in Greenbelt, Md.
Image Credit: NASA Goddard/Chris Gunn
Optics engineer John Hagopian works with a nanotube material sample in this file photograph from NASA's Goddard Space Flight Center in Greenbelt, Md.

Image Credit: NASA Goddard/Chris Gunn

Abstract:
A NASA engineer has achieved yet another milestone in his quest to advance an emerging super-black nanotechnology that promises to make spacecraft instruments more sensitive without enlarging their size.



This 2010 file video describes work on carbon nanotube technology at NASA's Goddard Space Flight Center in Greenbelt, Md.

Image Credit: NASA's Goddard Space Flight Center

NASA Engineer Achieves Another Milestone in Emerging Nanotechnology

Greenbelt, MD | Posted on July 18th, 2013

A team led by John Hagopian, an optics engineer at NASA's Goddard Space Flight Center in Greenbelt, Md., has demonstrated that it can grow a uniform layer of carbon nanotubes through the use of another emerging technology called atomic layer deposition or ALD. The marriage of the two technologies now means that NASA can grow nanotubes on three-dimensional components, such as complex baffles and tubes commonly used in optical instruments.

"The significance of this is that we have new tools that can make NASA instruments more sensitive without making our telescopes bigger and bigger," Hagopian said. "This demonstrates the power of nanoscale technology, which is particularly applicable to a new class of less-expensive tiny satellites called Cubesats that NASA is developing to reduce the cost of space missions."

Since beginning his research and development effort five years ago, Hagopian and his team have made significant strides applying the carbon-nanotube technology to a number of spaceflight applications, including, among other things, the suppression of stray light that can overwhelm faint signals that sensitive detectors are supposed to retrieve.

Super Absorbency

During the research, Hagopian tuned the nano-based super-black material, making it ideal for this application, absorbing on average more than 99 percent of the ultraviolet, visible, infrared and far-infrared light that strikes it — a never-before-achieved milestone that now promises to open new frontiers in scientific discovery. The material consists of a thin coating of multi-walled carbon nanotubes about 10,000 times thinner than a strand of human hair.

Once a laboratory novelty grown only on silicon, the NASA team now grows these forests of vertical carbon tubes on commonly used spacecraft materials, such as titanium, copper and stainless steel. Tiny gaps between the tubes collect and trap light, while the carbon absorbs the photons, preventing them from reflecting off surfaces. Because only a small fraction of light reflects off the coating, the human eye and sensitive detectors see the material as black.

Before growing this forest of nanotubes on instrument parts, however, materials scientists must first deposit a highly uniform foundation or catalyst layer of iron oxide that supports the nanotube growth. For ALD, technicians do this by placing a component or some other substrate material inside a reactor chamber and sequentially pulsing different types of gases to create an ultra-thin film whose layers are literally no thicker than a single atom. Once applied, scientists then are ready to actually grow the carbon nanotubes. They place the component in another oven and heat the part to about 1,832 F (750 C). While it heats, the component is bathed in carbon-containing feedstock gas.

"The samples we've grown to date are flat in shape," Hagopian explained. "But given the complex shapes of some instrument components, we wanted to find a way to grow carbon nanotubes on three-dimensional parts, like tubes and baffles. The tough part is laying down a uniform catalyst layer. That's why we looked to atomic layer deposition instead of other techniques, which only can apply coverage in the same way you would spray something with paint from a fixed angle."

ALD to the Rescue

ALD, first described in the 1980s and later adopted by the semiconductor industry, is one of many techniques for applying thin films. However, ALD offers an advantage over competing techniques. Technicians can accurately control the thickness and composition of the deposited films, even deep inside pores and cavities. This gives ALD the unique ability to coat in and around 3-D objects.

NASA Goddard co-investigator Vivek Dwivedi, through a partnership with the University of Maryland at College Park, is now advancing ALD reactor technology customized for spaceflight applications.

To determine the viability of using ALD to create the catalyst layer, while Dwivedi was building his new ALD reactor, Hagopian engaged through the Science Exchange the services of the Melbourne Centre for Nanofabrication (MCN), Australia's largest nanofabrication research center. The Science Exchange is an online community marketplace where scientific service providers can offer their services. The NASA team delivered a number of components, including an intricately shaped occulter used in a new NASA-developed instrument for observing planets around other stars.

Through this collaboration, the Australian team fine-tuned the recipe for laying down the catalyst layer — in other words, the precise instructions detailing the type of precursor gas, the reactor temperature and pressure needed to deposit a uniform foundation. "The iron films that we deposited initially were not as uniform as other coatings we have worked with, so we needed a methodical development process to achieve the outcomes that NASA needed for the next step," said Lachlan Hyde, MCN's expert in ALD.

The Australian team succeeded, Hagopian said. "We have successfully grown carbon nanotubes on the samples we provided to MCN and they demonstrate properties very similar to those we've grown using other techniques for applying the catalyst layer. This has really opened up the possibilities for us. Our goal of ultimately applying a carbon-nanotube coating to complex instrument parts is nearly realized."

####

For more information, please click here

Contacts:
Lori Keesey

301-258-0192

Copyright © NASA/Goddard Space Flight Center

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

"Blacker Than Black" (12.02.10):

"NASA Develops Super-Black Material That Absorbs Light Across Multiple Wavelength Bands" (11.08.11):

Australia’s Melbourne Centre for Nanofabrication:

Science Exchange:

Technology at NASA's Goddard Space Flight Center:

Related News Press

News and information

The relationship between charge density waves and superconductivity? It's complicated July 19th, 2018

Sirrus's Issued Patent Portfolio Continues To Accelerate July 18th, 2018

FEFU scientists reported on toxicity of carbon and silicon nanotubes and carbon nanofibers: Nanoparticles with a wide range of applying, including medicine, damage cells of microalgae Heterosigma akashivo badly. July 18th, 2018

In borophene, boundaries are no barrier: Rice U., Northwestern researchers make and test atom-thick boron's unique domains July 17th, 2018

Govt.-Legislation/Regulation/Funding/Policy

The relationship between charge density waves and superconductivity? It's complicated July 19th, 2018

FEFU scientists reported on toxicity of carbon and silicon nanotubes and carbon nanofibers: Nanoparticles with a wide range of applying, including medicine, damage cells of microalgae Heterosigma akashivo badly. July 18th, 2018

In borophene, boundaries are no barrier: Rice U., Northwestern researchers make and test atom-thick boron's unique domains July 17th, 2018

Tuning into quantum: Scientists unlock signal frequency control of precision atom qubits July 16th, 2018

Nanotubes/Buckyballs/Fullerenes/Nanorods

Carbon is the new black: Researchers use carbon nanotubes to develop clothing that can double as batteries July 10th, 2018

Nano-saturn: Supramolecular complex formation: Anthracene macrocycle and C60 fullerene June 8th, 2018

Unzipping graphene nanotubes into nanoribbons: New study shows elegant mathematical solution to understand how the flow of electrons changes when carbon nanotubes turn into zigzag nanoribbons June 6th, 2018

Making carbon nanotubes as usable as common plastics: Researchers discover that cresols disperse carbon nanotubes at unprecedentedly high concentrations May 15th, 2018

Discoveries

The relationship between charge density waves and superconductivity? It's complicated July 19th, 2018

FEFU scientists reported on toxicity of carbon and silicon nanotubes and carbon nanofibers: Nanoparticles with a wide range of applying, including medicine, damage cells of microalgae Heterosigma akashivo badly. July 18th, 2018

In borophene, boundaries are no barrier: Rice U., Northwestern researchers make and test atom-thick boron's unique domains July 17th, 2018

Tuning into quantum: Scientists unlock signal frequency control of precision atom qubits July 16th, 2018

Announcements

The relationship between charge density waves and superconductivity? It's complicated July 19th, 2018

Sirrus's Issued Patent Portfolio Continues To Accelerate July 18th, 2018

FEFU scientists reported on toxicity of carbon and silicon nanotubes and carbon nanofibers: Nanoparticles with a wide range of applying, including medicine, damage cells of microalgae Heterosigma akashivo badly. July 18th, 2018

In borophene, boundaries are no barrier: Rice U., Northwestern researchers make and test atom-thick boron's unique domains July 17th, 2018

Tools

The relationship between charge density waves and superconductivity? It's complicated July 19th, 2018

Oxford Instruments’ 22 Tesla superconducting magnet system commissioned at the UAM, making it the most intense magnetic field available outside a large international facility July 12th, 2018

Nanometrics to Announce Second Quarter Financial Results on July 31, 2018 July 12th, 2018

Nanometrics to Participate in the 10th Annual CEO Investor Summit 2018: Accredited investor and publishing research analyst event held concurrently with SEMICON West and Intersolar 2018 in San Francisco June 28th, 2018

Aerospace/Space

Disability Can Be a Superpower in Space Disabled astronauts offer unique solutions to emergencies in space May 17th, 2018

SpaceX Founding Employee Tom Mueller to Speak at International Space Development Conference May 15th, 2018

Shrimp, Soybeans, and Tomatoes Top the Menu in Cities in Space May 10th, 2018

National Space Society Applauds NASA's Support for Commercial Low Earth Orbit Space Stations May 2nd, 2018

Photonics/Optics/Lasers

SUNY Poly-Led AIM Photonics and Partners Attend SEMICON West 2018 to Showcase High-Tech Advances, Collaboration, and Future R&D Opportunities: New York’s Tech Valley Makes a Major Showing in Silicon Valley July 3rd, 2018

Cleaning or Etching Items with Unique Geometries Requires Specialized Expertise June 27th, 2018

Powering the 21st Century with Integrated Photonics: UCSB-Led Team Selected for Demonstration of a Novel Waveguide Platform Which is Transparent Throughout the MWIR and LWIR Spectral Bands June 19th, 2018

Executives Explore Key Megatrends and Innovations in MEMS, Sensors, Imaging Tech at SEMI-MSIG European Summits: Speakers to share developments in smart automotive, smart cities, smart industrial, biomedical, consumer and IoT, September 19-21, 2018 in Grenoble, France June 19th, 2018

Research partnerships

The relationship between charge density waves and superconductivity? It's complicated July 19th, 2018

FEFU scientists reported on toxicity of carbon and silicon nanotubes and carbon nanofibers: Nanoparticles with a wide range of applying, including medicine, damage cells of microalgae Heterosigma akashivo badly. July 18th, 2018

In borophene, boundaries are no barrier: Rice U., Northwestern researchers make and test atom-thick boron's unique domains July 17th, 2018

Nano-kirigami: 'Paper-cut' provides model for 3D intelligent nanofabrication July 13th, 2018

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project