Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > Arch Therapeutics Co-Founder Rutledge Ellis-Behnke Delivers Keynote at Nanomaterials Technology Transfer Conference in Corfu, Greece

Abstract:
Arch Therapeutics, Inc. (OTCQB: ARTH) ("Arch" or the "Company"), a life science company and developer of AC5, a novel product aimed at controlling bleeding and fluid loss in order to provide faster and safer surgical and interventional care, is pleased to advise that co-founding and inventing scientist, Dr. Rutledge Ellis-Behnke, delivered a keynote lecture titled "Translating Nanomedicine: Molecular medical devices from Nano Neuro Knitting to Immediate Hemostasis to Cancer Stem Cell Arrest" in Corfu, Greece at the Technology Transfer Workshop: From the Lab to the Marketplace.

Arch Therapeutics Co-Founder Rutledge Ellis-Behnke Delivers Keynote at Nanomaterials Technology Transfer Conference in Corfu, Greece

Cambridge, MA | Posted on July 17th, 2013

Dr. Ellis-Behnke was instrumental in discovering the hemostatic and other barrier properties of self-assembling peptides that could make future surgery and interventional care faster and safer through the development and proposed commercialization of the Company's flagship product candidate known as AC5. The product is based on a self-assembling peptide solution that creates a physical, mechanical barrier, which could be applied to bleeding organs or wounds to seal leaking blood and other fluids.

Dr. Ellis-Behnke presented during a day-long special workshop, addressing nanotechnology transfer, which was part of a larger four-day conference, the 4th International Conference for Nanoparticles and Nanomaterials to Nanodevices and Nanosystems, which reviewed the current state-of-the-art in nanoscience and nanotechnology, and identifies challenging and rewarding research directions.

Ellis-Behnke talked about his discovery of new molecular medical devices and how they will change medicine and the entire healthcare system. "Controlling the healing process is critical for the recovery of any injury, especially burn trauma," Ellis-Behnke continues, "First a barrier must be created to stop bleeding. In a surgical setting, we've shown that we can stop bleeding in small and large animals in less than 15 seconds, in multiple tissues, as well as a variety of different wounds, using a self-assembling peptide that creates a barrier and incorporates it into the surrounding tissue to form an extracellular matrix. This is all achieved without clotting and we've found that it does not induce an immune response."

An added benefit of the nanomaterial is that it is optically transparent. "Placing it on a wound not only stops the bleeding quickly and creates a barrier; it also provides a clear view of the surgical field while operating through it."

"This technology will impact the operating room in a fundamental way through the reduction in procedure time, along with the ability to control the environment so operations can be performed in less than optimal conditions while maintaining surgical field integrity," said Ellis-Behnke. "The time to perform an operation could potentially be reduced by up to 50 percent."

Additional details regarding Arch Therapeutics, Inc., its business, agreements and related matters are filed as part of the Company's continuous public disclosure as a reporting issuer under the Securities Exchange Act of 1934 filed with the Securities and Exchange Commission ("SEC"), and are available at the SEC's website at www.sec.gov.

On Behalf of the Board,

Terrence W. Norchi, MD.
Arch Therapeutics, Inc.

####

About Arch Therapeutics, Inc.
Arch Therapeutics, Inc. (OTCQB: ARTH) is a medical device company developing a novel approach to stop bleeding (hemostasis) and control leaking (sealant) during surgery and trauma care. Arch's goal is to develop and commercialize products based on our innovative technology platform that make surgery and interventional care faster and safer for patients. Arch's flagship development stage product candidate known as AC5 is being designed to elegantly achieve hemostasis in minimally invasive and open surgical procedures.

Notice Regarding Forward-Looking Statements

This news release contains "forward-looking statements" as that term is defined in Section 27(a) of the Securities Act of 1933, as amended, and Section 21(e) of the Securities Exchange Act of 1934, as amended. Statements in this press release that are not purely historical are forward-looking statements and include any statements regarding beliefs, plans, expectations or intentions regarding the future. Such forward-looking statements include, among other things, references to novel technologies and methods, our business and product development plans and projections, or market information. Actual results could differ from those projected in any forward-looking statements due to numerous factors. Such factors include, among others, the inherent uncertainties associated with developing new products or technologies and operating as a development stage company, our ability to retain important members of our management team and attract other qualified personnel, our ability to raise the additional funding we will need to continue to pursue our business and product development plans, our ability to develop and commercialize products based on our technology platform, and market conditions. These forward-looking statements are made as of the date of this news release, and we assume no obligation to update the forward-looking statements, or to update the reasons why actual results could differ from those projected in the forward-looking statements. Although we believe that any beliefs, plans, expectations and intentions contained in this press release are reasonable, there can be no assurance that any such beliefs, plans, expectations or intentions will prove to be accurate. Investors should consult all of the information set forth herein and should also refer to the risk factors disclosure outlined in the reports and other documents we file with the SEC, available at www.sec.gov.

For more information, please click here

Contacts:
ARTH Investor Relations
Toll Free: +1-855-340-ARTH (2784) (US and Canada)

Copyright © Marketwire

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

The power of perovskite: OIST researchers improve perovskite-based technology in the entire energy cycle, from solar cells harnessing power to LED diodes to light the screens of future electronic devices and other lighting applications August 18th, 2017

Gold nanostars and immunotherapy vaccinate mice against cancer: New treatment cures, vaccinates mouse in small proof-of-concept study August 18th, 2017

Researchers printed graphene-like materials with inkjet August 17th, 2017

Candy cane supercapacitor could enable fast charging of mobile phones August 17th, 2017

Self Assembly

Physicists gain new insights into nanosystems with spherical confinement: Enormous potential for the targeted delivery of pharmaceutical agents and the creation of tailored nanoparticles July 27th, 2017

Oddball enzyme provides easy path to synthetic biomaterials May 17th, 2017

Nanotubes that build themselves April 14th, 2017

Nanocages for gold particles: what is happening inside? March 16th, 2017

Nanomedicine

Gold nanostars and immunotherapy vaccinate mice against cancer: New treatment cures, vaccinates mouse in small proof-of-concept study August 18th, 2017

Freeze-dried foam soaks up carbon dioxide: Rice University scientists lead effort to make novel 3-D material August 16th, 2017

Gold shines through properties of nano biosensors: Researchers discover that fluorescence in ligand-protected gold nanoclusters is an intrinsic property of the gold particles themselves August 16th, 2017

Two Scientists Receive Grants to Develop New Materials: Chad Mirkin and Monica Olvera de la Cruz recognized by Sherman Fairchild Foundation August 16th, 2017

Materials/Metamaterials

Researchers printed graphene-like materials with inkjet August 17th, 2017

Two Scientists Receive Grants to Develop New Materials: Chad Mirkin and Monica Olvera de la Cruz recognized by Sherman Fairchild Foundation August 16th, 2017

Fewer defects from a 2-D approach August 15th, 2017

2-faced 2-D material is a first at Rice: Rice University materials scientists create flat sandwich of sulfur, molybdenum and selenium August 14th, 2017

Announcements

The power of perovskite: OIST researchers improve perovskite-based technology in the entire energy cycle, from solar cells harnessing power to LED diodes to light the screens of future electronic devices and other lighting applications August 18th, 2017

Gold nanostars and immunotherapy vaccinate mice against cancer: New treatment cures, vaccinates mouse in small proof-of-concept study August 18th, 2017

Researchers printed graphene-like materials with inkjet August 17th, 2017

Candy cane supercapacitor could enable fast charging of mobile phones August 17th, 2017

Events/Classes

FRITSCH Milling and Sizing! Innovations at POWTECH 2017 - Hall 2 Stand 227 August 9th, 2017

Thermo Fisher Scientific Showcases Innovations in Electron Microscopy and Spectroscopy at M&M 2017: New analytical technologies improve workflows for life sciences and materials science researchers August 8th, 2017

Nanometrics Announces Upcoming Investor Events August 3rd, 2017

Arrowhead Pharmaceuticals to Webcast Fiscal 2017 Third Quarter Results July 27th, 2017

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project