Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > Using pressure to swell pores, not crush them

Abstract:
More than a decade ago, Thomas Vogt and Yongjae Lee, then colleagues at Brookhaven National Laboratory, uncovered a counter-intuitive property of zeolites. When they put these porous minerals in water, and then put the water under high pressure, the tiny cavities within the zeolites actually grew in size.

Using pressure to swell pores, not crush them

Columbia, SC | Posted on July 17th, 2013

Pressure failed to crush, and even caused expansion. In the years since, Vogt and Lee, now at the University of South Carolina and Yonsei University (Seoul), respectively, have followed up with cation exchange experiments, placing a series of alkali metal ions into the pores of the aluminosilicate zeolites, particularly focusing on natrolite. X-ray diffraction studies, in collaboration with Chi-Chang Kao at Stanford University, have revealed the interior geometry of the cavities and the arrangement of the cations and water molecules held within, before and after pressurization.

The team has just published a detailed characterization of Li+, Na+, K+, Rb+ and Cs+ natrolites, the first four of which, when treated under pressure in water, become "super-hydrated" with water molecules - that is, the process inserts more water molecules into the zeolites than are present under ambient conditions.

The water molecules and ions together adjust the surrounding aluminosilicate framework. The team likens the shift in structure under pressure to what you see when you shift a "chatterbox," the children's fortune teller constructed from paper. The pressure-induced hydration can cause dramatic unit cell volume increases: more than a 20 percent expansion in Li-natrolite, for example.

The phenomenon is more than just an academic curiosity. The team is pursuing a number of applications in which a "tuned" cavity size that is triggered by pressure could be useful. Selectively - and irreversibly - trapping radioactive cations in a nuclear waste stream, for example, is just one area in which they've already demonstrated progress.

Lee, Kao and Vogt are supported by a Global Research Laboratory from the Ministry of Education, Science and Technology (MEST) of Korea.

####

For more information, please click here

Contacts:
Steven Powell

803-777-1923

Copyright © University of South Carolina

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Research Study: MetaSOLTM Shatters Solar Panel Efficiency Forecasts with Innovative New Coating: Coating Provides 1.2 Percent Absolute Enhancement to Triple Junction Solar Cells December 2nd, 2016

Deep insights from surface reactions: Researchers use Stampede supercomputer to study new chemical sensing methods, desalination and bacterial energy production December 2nd, 2016

Quantum obstacle course changes material from superconductor to insulator December 1st, 2016

Throwing new light on printed organic solar cells December 1st, 2016

Chemistry

Deep insights from surface reactions: Researchers use Stampede supercomputer to study new chemical sensing methods, desalination and bacterial energy production December 2nd, 2016

Govt.-Legislation/Regulation/Funding/Policy

Research Study: MetaSOLTM Shatters Solar Panel Efficiency Forecasts with Innovative New Coating: Coating Provides 1.2 Percent Absolute Enhancement to Triple Junction Solar Cells December 2nd, 2016

Deep insights from surface reactions: Researchers use Stampede supercomputer to study new chemical sensing methods, desalination and bacterial energy production December 2nd, 2016

Quantum obstacle course changes material from superconductor to insulator December 1st, 2016

Throwing new light on printed organic solar cells December 1st, 2016

Discoveries

Research Study: MetaSOLTM Shatters Solar Panel Efficiency Forecasts with Innovative New Coating: Coating Provides 1.2 Percent Absolute Enhancement to Triple Junction Solar Cells December 2nd, 2016

Deep insights from surface reactions: Researchers use Stampede supercomputer to study new chemical sensing methods, desalination and bacterial energy production December 2nd, 2016

Quantum obstacle course changes material from superconductor to insulator December 1st, 2016

Throwing new light on printed organic solar cells December 1st, 2016

Announcements

Research Study: MetaSOLTM Shatters Solar Panel Efficiency Forecasts with Innovative New Coating: Coating Provides 1.2 Percent Absolute Enhancement to Triple Junction Solar Cells December 2nd, 2016

Deep insights from surface reactions: Researchers use Stampede supercomputer to study new chemical sensing methods, desalination and bacterial energy production December 2nd, 2016

Quantum obstacle course changes material from superconductor to insulator December 1st, 2016

Throwing new light on printed organic solar cells December 1st, 2016

Research partnerships

Deep insights from surface reactions: Researchers use Stampede supercomputer to study new chemical sensing methods, desalination and bacterial energy production December 2nd, 2016

Quantum obstacle course changes material from superconductor to insulator December 1st, 2016

Novel silicon etching technique crafts 3-D gradient refractive index micro-optics November 28th, 2016

Single photon converter -- a key component of quantum internet November 28th, 2016

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project