Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > JPK reports on the use of Quantitative Imaging, QI, for the study of living bacteria at the Université de Paris-Sud

Dr Christian Marlière and his PhD student, Samia Dhahri, working with
the JPK NanoWizard®3 system with QI™ mode study living - and gliding- bacteria
Dr Christian Marlière and his PhD student, Samia Dhahri, working with the JPK NanoWizard®3 system with QI™ mode study living - and gliding- bacteria

Abstract:
JPK Instruments, a world-leading manufacturer of nanoanalytic instrumentation for research in life sciences and soft matter, reports on how researchers from the Université de Paris-Sud and CNRS Montpellier have used the new QI mode of AFM imaging to quantitatively characterize living bacteria without any immobilization.

JPK reports on the use of Quantitative Imaging, QI, for the study of living bacteria at the Université de Paris-Sud

Berlin, Germany | Posted on July 16th, 2013

Dr Christian Marlière ( ) of the Institute of Molecular Sciences (ISMO) located at the Université Paris Sud, CNRS, Orsay leads a research team to study the dynamics and properties (mechanical, electrical and electro-chemical) of living bacteria in purely controlled physiological conditions at nanometer scale: motility or adhesion processes of bacteria on solid substrates, biofilms formation, the influence of light on moving properties of cyanobacteria, effects of antibiotics on bacterial membranes and biofilm etc. One subject of importance is the correlation between the physical, chemical and biological processes involved at sub-micrometer scale around bacteria and their biofilms plus the resulting variation of electrical signals as measured with common macroscopic methods such as electrical conductivity, impedance or spontaneous potential measurements currently used in geophysics. These scanning probe techniques are used in parallel with optical methods having high spatial and temporal resolution such as fluorescence confocal microscopy, Sum Frequency Generation spectroscopy (SFG), STimulated Emission Depletion microscopy (STED), Photo-Activated Localization Microscopy (PALM) and Total Internal Reflection Fluorescence (TIRF) microscopy.

Describing his motivation for using AFM in his research, Dr Marlière said "Thanks to AFM, we are able to make measurements of local mechanical, electric and electro-chemical properties at very well controlled spots on or over the bacteria. JPK's design will enable us to couple it to the advanced microscopies listed above. However, there is something most valuable in the latest JPK NanoWizard®3 AFM system: Quantitative Imaging. Our recent work is based on an original method relying on an improved combination of a gentle sample preparation process and the JPK QI™ mode. We were able to image living bacteria by AFM in their standard (physiological) liquid environment without any external immobilization step that has been unanimously described in literature as mandatory. Furthermore, the native gliding movements of some bacteria (such as cyanobacteria) upon the surface were observed by AFM and important information about the gliding mechanism was obtained."

An example of this work has been published in a paper entitled "In-situ determination of the mechanical properties of gliding or non-motile bacteria by Atomic Force Microscopy under physiological conditions without immobilization" (citation:PLoS ONE 8(4): e61663. doi:10.1371/journal.pone.0061663/ www.plosone.org/article/info%3Adoi%2F10.1371%2Fjournal.pone.0061663 ). The lead author was Samia Dhahri, one of Dr Marlière's PhD students in Montpellier. She is pictured here with Dr Marlière and the JPK system.

For more details about JPK's NanoWizard®, QI™ mode and applications for the bio & nano sciences, please contact JPK on +49 30533112070, visit the web site: www.jpk.com/ or see more on Facebook: www.jpk.com/facebook and on You Tube: www.youtube.com/jpkinstruments.

####

About JPK Instruments (JPK)
JPK Instruments AG is a world-leading manufacturer of nanoanalytic instruments - particularly atomic force microscope (AFM) systems and optical tweezers - for a broad range of applications reaching from soft matter physics to nano-optics, from surface chemistry to cell and molecular biology. From its earliest days applying atomic force microscope (AFM) technology, JPK has recognized the opportunities provided by nanotechnology for transforming life sciences and soft matter research. This focus has driven JPK's success in uniting the worlds of nanotechnology tools and life science applications by offering cutting-edge technology and unique applications expertise. Headquartered in Berlin and with direct operations in Dresden, Cambridge (UK), Singapore, Tokyo and Paris (France), JPK maintains a global network of distributors and support centers and provides on the spot applications and service support to an ever-growing community of researchers.

For more information, please click here

Contacts:
JPK Instruments AG
Bouchéstrasse 12
Haus 2, Aufgang C
Berlin 12435
Germany
T +49 30533112070
F +49 30 5331 22555
http://www.jpk.com/


Talking Science Limited
39 de Bohun Court
Saffron Walden
Essex CB10 2BA
United Kingdom
T +44(0)1799 521881
M +44(0)7843 012997
http://www.talking-science.com/

Copyright © JPK Instruments (JPK)

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Researchers develop artificial building blocks of life March 8th, 2024

How surface roughness influences the adhesion of soft materials: Research team discovers universal mechanism that leads to adhesion hysteresis in soft materials March 8th, 2024

Two-dimensional bimetallic selenium-containing metal-organic frameworks and their calcinated derivatives as electrocatalysts for overall water splitting March 8th, 2024

Curcumin nanoemulsion is tested for treatment of intestinal inflammation: A formulation developed by Brazilian researchers proved effective in tests involving mice March 8th, 2024

Imaging

Nanoscale CL thermometry with lanthanide-doped heavy-metal oxide in TEM March 8th, 2024

First direct imaging of small noble gas clusters at room temperature: Novel opportunities in quantum technology and condensed matter physics opened by noble gas atoms confined between graphene layers January 12th, 2024

The USTC realizes In situ electron paramagnetic resonance spectroscopy using single nanodiamond sensors November 3rd, 2023

Observation of left and right at nanoscale with optical force October 6th, 2023

Discoveries

What heat can tell us about battery chemistry: using the Peltier effect to study lithium-ion cells March 8th, 2024

Researchers’ approach may protect quantum computers from attacks March 8th, 2024

High-tech 'paint' could spare patients repeated surgeries March 8th, 2024

Nanoscale CL thermometry with lanthanide-doped heavy-metal oxide in TEM March 8th, 2024

Announcements

What heat can tell us about battery chemistry: using the Peltier effect to study lithium-ion cells March 8th, 2024

Curcumin nanoemulsion is tested for treatment of intestinal inflammation: A formulation developed by Brazilian researchers proved effective in tests involving mice March 8th, 2024

The Access to Advanced Health Institute receives up to $12.7 million to develop novel nanoalum adjuvant formulation for better protection against tuberculosis and pandemic influenza March 8th, 2024

Nanoscale CL thermometry with lanthanide-doped heavy-metal oxide in TEM March 8th, 2024

Tools

First direct imaging of small noble gas clusters at room temperature: Novel opportunities in quantum technology and condensed matter physics opened by noble gas atoms confined between graphene layers January 12th, 2024

New laser setup probes metamaterial structures with ultrafast pulses: The technique could speed up the development of acoustic lenses, impact-resistant films, and other futuristic materials November 17th, 2023

Ferroelectrically modulate the Fermi level of graphene oxide to enhance SERS response November 3rd, 2023

The USTC realizes In situ electron paramagnetic resonance spectroscopy using single nanodiamond sensors November 3rd, 2023

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project