Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > Artificial organelles transform free radicals into water and oxygen

Inside the artificial peroxisome reactive oxygen radicals are being transformed into water (H2O) and oxygen (O2) via a reaction cascade with two enzymes. Adapted with permission from Tanner et al. Nano Letters 2013 13 (6), 2875-2883. Copyright 2013 American Chemical Society.
Inside the artificial peroxisome reactive oxygen radicals are being transformed into water (H2O) and oxygen (O2) via a reaction cascade with two enzymes.

Adapted with permission from Tanner et al. Nano Letters 2013 13 (6), 2875-2883. Copyright 2013 American Chemical Society.

Abstract:
Researchers at the University of Basel have successfully developed artificial organelles that are able to support the reduction of toxic oxygen compounds. This opens up new ways in the development of novel drugs that can influence pathological states directly inside the cell. The results have been published in the Journal «Nano Letters».

Artificial organelles transform free radicals into water and oxygen

Basel, Switzerland | Posted on July 16th, 2013

Free oxygen radicals are produced either as metabolic byproduct, or through environmental influences such as UV-rays and smog. Is the concentration of free radicals inside the organism elevated to the point where the antioxidant defense mechanism is overwhelmed, the result can be oxidative stress, which is associated with numerous diseases such as cancer of arthritis.

The aggressive molecules are normally controlled by endogenous antioxidants. Within this process, organelles located inside the cell, so-called peroxisomes, play an important part, since they assist in regulating the concentration of free oxygen radicals.

Nanocapsules Transform Radicals into Water and Oxygen

Prof. Cornelia Palivan and her research group at the University of Basel have successfully produced artificial peroxisomes that mimic the natural organelle. The researchers developed a cell organelle based on polymeric nanocapsules, in which two types of enzymes are encapsulated. These enzymes are able to transform free oxygen radicals into water and oxygen.

In order to verify the functionality inside the cell, channel proteins were added to the artificial peroxisome's membrane, to serve as gates for substrates and products. The results show that the artificial peroxisomes are incorporated into the cell, where they then very efficiently support the natural peroxisomes in the detoxification process.

Novel Drugs

This type of effective principle targets the cell dysfunction directly on the cellular level, thus representing a further step towards the development of novel drugs that will make patient-oriented and personalized treatments possible in the future.

####

For more information, please click here

Contacts:
Reto Caluori

41-612-672-495

Prof. Cornelia G. Palivan
University of Basel
Departement of Chemistry
Tel. +41 61 267 38 39


University of Basel
Communications Office
Petersgraben 35, Postfach
4003 Basel
Switzerland
Tel. +41 61 267 30 17
Fax +41 61 267 30 13

Copyright © University of Basel

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

Original Citation

doi: 10.1021/nl401215n:

Related News Press

News and information

Superconductivity: Footballs with no resistance - Indications of light-induced lossless electricity transmission in fullerenes contribute to the search for superconducting materials for practical applications February 9th, 2016

SUNY Poly and GLOBALFOUNDRIES Announce New $500M R&D Program in Albany To Accelerate Next Generation Chip Technology: Arrival of Second Cutting Edge EUV Lithography Tool Launches New Patterning Center That Will Generate Over 100 New High Tech Jobs at SUNY Poly February 9th, 2016

Making sense of metallic glass February 9th, 2016

Electron's 1-D metallic surface state observed: A step for the prediction of electronic properties of extremely-fine metal nanowires in next-generation semiconductors February 9th, 2016

Nanomedicine

Nanoparticle therapy that uses LDL and fish oil kills liver cancer cells February 9th, 2016

Leading bugs to the death chamber: A kinder face of cholesterol February 8th, 2016

UTHealth research looks at nanotechnology to help prevent preterm birth February 7th, 2016

Scientists take key step toward custom-made nanoscale chemical factories: Berkeley Lab researchers part of team that creates new function in tiny protein shell structures February 6th, 2016

Discoveries

Making sense of metallic glass February 9th, 2016

Electron's 1-D metallic surface state observed: A step for the prediction of electronic properties of extremely-fine metal nanowires in next-generation semiconductors February 9th, 2016

Nanoparticle therapy that uses LDL and fish oil kills liver cancer cells February 9th, 2016

Leading bugs to the death chamber: A kinder face of cholesterol February 8th, 2016

Announcements

Superconductivity: Footballs with no resistance - Indications of light-induced lossless electricity transmission in fullerenes contribute to the search for superconducting materials for practical applications February 9th, 2016

SUNY Poly and GLOBALFOUNDRIES Announce New $500M R&D Program in Albany To Accelerate Next Generation Chip Technology: Arrival of Second Cutting Edge EUV Lithography Tool Launches New Patterning Center That Will Generate Over 100 New High Tech Jobs at SUNY Poly February 9th, 2016

Making sense of metallic glass February 9th, 2016

Electron's 1-D metallic surface state observed: A step for the prediction of electronic properties of extremely-fine metal nanowires in next-generation semiconductors February 9th, 2016

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers

Superconductivity: Footballs with no resistance - Indications of light-induced lossless electricity transmission in fullerenes contribute to the search for superconducting materials for practical applications February 9th, 2016

Making sense of metallic glass February 9th, 2016

Electron's 1-D metallic surface state observed: A step for the prediction of electronic properties of extremely-fine metal nanowires in next-generation semiconductors February 9th, 2016

Nanoparticle therapy that uses LDL and fish oil kills liver cancer cells February 9th, 2016

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







Car Brands
Buy website traffic