Nanotechnology Now







Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > Air Force support for a new generation of lithium-ion batteries: New graphene technique can significantly increase the storage capacity of lithium ion by combining graphene nanoribbons with tin oxide

Abstract:
A few months back, the Air Force Office of Scientific Research (AFOSR) was proud to publish an article regarding a research accomplishment by Dr. Jim Tour and his research team at Rice University. AFOSR, along with other funding agencies, supported Dr. Tour's research effort to make graphene suitable for a variety of organic chemistry applications -- especially the promise of advanced chemical sensors, nanoscale electronic circuits and metamaterials.

Air Force support for a new generation of lithium-ion batteries: New graphene technique can significantly increase the storage capacity of lithium ion by combining graphene nanoribbons with tin oxide

Arlington, VA | Posted on July 15th, 2013

Four years ago, Tour's research team demonstrated that they could chemically unzip cylindrical shaped carbon nanotubes into soluble graphene nanoribbons (GNR) without compromising the electronic properties of the graphitic structure. A recent paper by the Tour team, published in IEEE Spectrum and partially funded by AFOSR, showed that GNR can significantly increase the storage capacity of lithium ion (Li-ion) by combining graphene nanoribbons with tin oxide.

By producing GNR in bulk, a necessary requirement for making this a viable process, the Tour team mixes GNR and 10 nanometer wide particles of tin oxide to create a slurry. By adding a cellulose gum binding agent and water, the mixture is then applied to a capacitor, which is then fitted to a button-style lithium-ion battery.

In the Tour lab tests, the prototype battery had an initial charge capacity of more than 1,520 milliamp hours per gram (mAh/g). After repeated charge-discharge cycles that number began to plateau at about 825 mAh/g, but after 50 discharge cycles, the batteries retained far more capacity -- more than double -- that of Li-ion batteries that employ standard graphite anodes.

The critical key that makes the increase in battery capacity possible is the significant improvement in flexibility that graphene nanoribbons lend to the anode. By comparison, conventional Li-ion batteries with graphite anodes break down and lose efficiency because of their inability to flex, as they expand and contract, with repeated charge and discharge cycles; over time the graphite cracks and the battery cannot charge. Conversely, anodes with a graphene nanoribbon platform allow the tin oxide particles to maintain a consistent size, rather than expanding and contracting, and thus eliminating the brittleness and cracking associated with a graphite-based anode.

This breakthrough may very well lead to the next generation of the lithium-ion battery -- a promising new platform for creating more durable, lightweight and efficient lithium-ion power.

####

For more information, please click here

Contacts:
Robert White

703-588-0665

Copyright © Air Force Office of Scientific Research

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

Graphene

Two-dimensional semiconductor comes clean April 27th, 2015

The 16th Trends in Nanotechnology International Conference (TNT 2015) unveils 25 Keynote Speakers: Call for abstracts open April 27th, 2015

Graphenea celebrates fifth anniversary April 27th, 2015

News and information

Scientists join forces to reveal the mass and shape of single molecules April 27th, 2015

The 16th Trends in Nanotechnology International Conference (TNT 2015) unveils 25 Keynote Speakers: Call for abstracts open April 27th, 2015

Govt.-Legislation/Regulation/Funding/Policy

Two-dimensional semiconductor comes clean April 27th, 2015

Scientists join forces to reveal the mass and shape of single molecules April 27th, 2015

SEFCU, SUNY Poly CNSE Announce Winning Student-Led Teams in the 6th Annual $500,000 New York Business Plan Competition April 25th, 2015

Northwestern scientists develop first liquid nanolaser: Technology could lead to new way of doing 'lab on a chip' medical diagnostics April 25th, 2015

Sensors

Sensor Designed in Iran Able to Remove Formaldehyde Gas from Environment April 27th, 2015

ORNL reports method that takes quantum sensing to new level April 23rd, 2015

New class of 3D-printed aerogels improve energy storage April 22nd, 2015

‘Oxford Instruments Young Nanoscientist India Award 2015’ to Prof. Arindam Ghosh April 20th, 2015

Discoveries

Two-dimensional semiconductor comes clean April 27th, 2015

Scientists join forces to reveal the mass and shape of single molecules April 27th, 2015

Sensor Designed in Iran Able to Remove Formaldehyde Gas from Environment April 27th, 2015

Cacao Seed Extract Used in Production of Catalytic Nanoparticles April 27th, 2015

Materials/Metamaterials

The 16th Trends in Nanotechnology International Conference (TNT 2015) unveils 25 Keynote Speakers: Call for abstracts open April 27th, 2015

Graphenea celebrates fifth anniversary April 27th, 2015

Scientists Use Nanoscale Building Blocks and DNA 'Glue' to Shape 3D Superlattices: New approach to designing ordered composite materials for possible energy applications April 23rd, 2015

Surface matters: Huge reduction of heat conduction observed in flat silicon channels April 23rd, 2015

Announcements

Scientists join forces to reveal the mass and shape of single molecules April 27th, 2015

The 16th Trends in Nanotechnology International Conference (TNT 2015) unveils 25 Keynote Speakers: Call for abstracts open April 27th, 2015

Graphenea celebrates fifth anniversary April 27th, 2015

Sensor Designed in Iran Able to Remove Formaldehyde Gas from Environment April 27th, 2015

Military

Two-dimensional semiconductor comes clean April 27th, 2015

Electron spin brings order to high entropy alloys April 23rd, 2015

Engineer improves rechargeable batteries with MoS2 nano 'sandwich' April 18th, 2015

MIT sensor detects spoiled meat: Tiny device could be incorporated into 'smart packaging' to improve food safety April 15th, 2015

Battery Technology/Capacitors/Generators/Piezoelectrics/Thermoelectrics/Energy storage

Phonons, arise! Small electric voltage alters conductivity in key materials April 22nd, 2015

New class of 3D-printed aerogels improve energy storage April 22nd, 2015

'Holey' graphene for energy storage: Charged holes in graphene increase energy storage capacity April 22nd, 2015

‘Oxford Instruments Young Nanoscientist India Award 2015’ to Prof. Arindam Ghosh April 20th, 2015

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More










ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project