Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > Miracle material graphene could deliver internet one hundred times faster

Researchers look at new ways to use graphene in telecommunications
Researchers look at new ways to use graphene in telecommunications

Abstract:
The use of graphene in telecommunications could dramatically accelerate internet speeds by up to a hundred times, according to new research by scientists in our Department of Physics.

Miracle material graphene could deliver internet one hundred times faster

Bath, UK | Posted on July 14th, 2013

In a paper published in Physical Review Letters, researchers from the Centre for Graphene Science at the Universities of Bath and Exeter have demonstrated for the first time incredibly short optical response rates using graphene, which could pave the way for a revolution in telecommunications.

Every day large amounts of information is transmitted and processed through optoelectronic devices such as optical fibres, photodetectors and lasers. Signals are sent by photons at infrared wavelengths and processed using optical switches, which convert signals into a series of light pulses.

Ordinarily optical switches respond at rate of a few picoseconds - around a trillionth of a second. Through this study physicists have observed the response rate of an optical switch using ‘few layer graphene' to be around one hundred femtoseconds - nearly a hundred times quicker than current materials.

Graphene is just one atom thick, but remarkably strong. Scientists have suggested that it would take an elephant, balanced on a pencil to break through a single sheet. Already dubbed a miracle material due to its strength, lightness, flexibility, conductivity and low cost, it could now enter the market to dramatically improve telecommunications.

Commenting on the report's main findings, lead researcher Dr Enrico Da Como said: "We've seen an ultrafast optical response rate, using ‘few-layer graphene', which has exciting applications for the development of high speed optoelectronic components based on graphene. This fast response is in the infrared part of the electromagnetic spectrum, where many applications in telecommunications, security and also medicine are currently developing and affecting our society."

Co-Director of the Centre for Graphene Science at Bath, Professor Simon Bending added: "The more we find out about graphene the more remarkable its properties seem to be. This research shows that it also has unique optical properties which could find important new applications."

In the long term this research could also lead to the development of quantum cascade lasers based on graphene. Quantum cascade lasers are semiconductor lasers used in pollution monitoring, security and spectroscopy. Few-layer graphene could emerge as a unique platform for this interesting application.

####

About University of Bath
We are one of the UK's leading universities with an international reputation for quality research and teaching. Our Mission is to deliver world class research and teaching, educating our graduates to become future leaders and innovators, and benefiting the wider population through our research, enterprise and influence. Our courses are innovative and interdisciplinary and we have an outstanding record of graduate employment.

For more information, please click here

Contacts:
Andy Dunne
University Press Office
44(0)1225386883
44(0)7966 341357

Copyright © University of Bath

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

Download article:

Related News Press

News and information

A Tougher Tooth: A new dental restoration composite developed by UCSB scientists proves more durable than the conventional material August 22nd, 2017

Nagoya physicists resolve long-standing mystery of structure-less transition: Nagoya University-led team of physicists use a synchrotron radiation X-ray source to probe a so-called 'structure-less' transition and develop a new understanding of molecular conductors August 21st, 2017

Tokai University research: Nanomaterial wrap for improved tissue imaging August 21st, 2017

Silk could improve sensitivity, flexibility of wearable body sensors August 20th, 2017

Graphene/ Graphite

Researchers printed graphene-like materials with inkjet August 17th, 2017

From hot to cold: How to move objects at the nanoscale: Moving a single gold nanocluster on a graphene membrane, thanks to a thermal gradient applied to the borders: a new study sheds light on the physical mechanisms driving this phenomenon August 10th, 2017

Controlled manipulation: Scientists at FAU are investigating the properties of hybrid systems consisting of carbon nanostructures and a dye August 8th, 2017

Announcing the successful industrial feasibility test of a turnkey quantum Hall system for graphene characterisation and primary resistance metrology August 2nd, 2017

Law enforcement/Anti-Counterfeiting/Security/Loss prevention

Leti Announces Backside Shield that Protects Microchips from Physical Attacks March 8th, 2017

NUS engineers develop low-cost, flexible terahertz radiation source for fast, non-invasive screening: Novel invention presents promising applications in spectroscopy, safety surveillance, cancer diagnosis, imaging and communication February 1st, 2017

Strength of hair inspires new materials for body armor January 18th, 2017

Dressing a metal in various colors: DGIST research developed a technology to coat metal with several nanometers of semiconducting materials January 17th, 2017

Sensors

Silk could improve sensitivity, flexibility of wearable body sensors August 20th, 2017

Researchers printed graphene-like materials with inkjet August 17th, 2017

Sensing technology takes a quantum leap with RIT photonics research: Office of Naval Research funds levitated optomechanics project August 10th, 2017

Giant enhancement of electromagnetic waves revealed within small dielectric particles: Scientists have done for the first time direct measurements of giant electromagnetic fields July 8th, 2017

Discoveries

A Tougher Tooth: A new dental restoration composite developed by UCSB scientists proves more durable than the conventional material August 22nd, 2017

Nagoya physicists resolve long-standing mystery of structure-less transition: Nagoya University-led team of physicists use a synchrotron radiation X-ray source to probe a so-called 'structure-less' transition and develop a new understanding of molecular conductors August 21st, 2017

Tokai University research: Nanomaterial wrap for improved tissue imaging August 21st, 2017

Silk could improve sensitivity, flexibility of wearable body sensors August 20th, 2017

Announcements

A Tougher Tooth: A new dental restoration composite developed by UCSB scientists proves more durable than the conventional material August 22nd, 2017

Nagoya physicists resolve long-standing mystery of structure-less transition: Nagoya University-led team of physicists use a synchrotron radiation X-ray source to probe a so-called 'structure-less' transition and develop a new understanding of molecular conductors August 21st, 2017

Tokai University research: Nanomaterial wrap for improved tissue imaging August 21st, 2017

Silk could improve sensitivity, flexibility of wearable body sensors August 20th, 2017

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers

Nagoya physicists resolve long-standing mystery of structure-less transition: Nagoya University-led team of physicists use a synchrotron radiation X-ray source to probe a so-called 'structure-less' transition and develop a new understanding of molecular conductors August 21st, 2017

Tokai University research: Nanomaterial wrap for improved tissue imaging August 21st, 2017

Silk could improve sensitivity, flexibility of wearable body sensors August 20th, 2017

The power of perovskite: OIST researchers improve perovskite-based technology in the entire energy cycle, from solar cells harnessing power to LED diodes to light the screens of future electronic devices and other lighting applications August 18th, 2017

Environment

Freeze-dried foam soaks up carbon dioxide: Rice University scientists lead effort to make novel 3-D material August 16th, 2017

Two Scientists Receive Grants to Develop New Materials: Chad Mirkin and Monica Olvera de la Cruz recognized by Sherman Fairchild Foundation August 16th, 2017

New approach on research and design for CQD catalysts in World Scientific NANO August 2nd, 2017

Magnetized viruses attack harmful bacteria: Rice, China team uses phage-enhanced nanoparticles to kill bacteria that foul water treatment systems August 2nd, 2017

Photonics/Optics/Lasers

Researchers printed graphene-like materials with inkjet August 17th, 2017

Moving at the Speed of Light: University of Arizona selected for high-impact, industrial demonstration of new integrated photonic cryogenic datalink for focal plane arrays: Program is major milestone for AIM Photonics August 10th, 2017

Sensing technology takes a quantum leap with RIT photonics research: Office of Naval Research funds levitated optomechanics project August 10th, 2017

High resolution without particle accelerator: A first for physics -- University of Jena physicists are first to achieve optical coherence tomography with XUV radiation at laboratory scale August 7th, 2017

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project