Nanotechnology Now

Our NanoNews Digest Sponsors



Heifer International

Wikipedia Affiliate Button


android tablet pc

Home > Press > Putting more science into the art of making nanocrystals

Abstract:
Preparing semiconductor quantum dots is sometimes more of a black art than a science. That presents an obstacle to further progress in, for example, creating better solar cells or lighting devices, where quantum dots offer unique advantages that would be particularly useful if they could be used as basic building blocks for constructing larger nanoscale architectures.

Putting more science into the art of making nanocrystals

Columbia, SC | Posted on July 11th, 2013

Andrew Greytak, a chemist in the College of Arts and Sciences at the University of South Carolina, is leading a research team that's making the process of synthesizing quantum dots much more systematic. His group just published a paper in Chemistry of Materials detailing an effective new method for purifying CdSe nanocrystals with well-defined surface properties.

Their process uses gel-permeation chromatography (GPC) to separate quantum dots from small-molecule impurities, and the team went further in characterizing the nanocrystals by a variety of analytical methods. A comparison of their purified quantum dots with those purified by the traditional method of multiple solvation and precipitation cycles underscored the utility of the new method in preparing uniform semiconductor nanocrystals highly amenable to further synthetic manipulation.

Quantum dots

Quantum dots, which are nanocrystals with diameters in the range of 5-10 nanometers, have optical and other physical properties different from those of larger crystals. The reduced size allows them to absorb and emit different colors than bulk quantities of the same compound because of quantum mechanical effects; they also have very large surface-to-volume ratios and can be sensitive to surface treatments.

Greytak's laboratory typically prepares quantum dots in hydrophobic solvents (such as 1-octadecene), so they come out "capped" with hydrophobic molecules and dissolve readily in nonpolar solvents. "The way the process works, you always have a significant amount of unreacted starting material, high-boiling solvents and extra surfactants in there that are important to the synthesis," said Greytak. "But once the synthesis is complete, they're impurities that need to be removed."

The historic method of quantum dot purification is cycles of solvation, precipitation (such as with alcohol), decanting of impurities and re-solvation. Although the method has been in use for some 20 years, it has a fundamental shortcoming.

"With the precipitation and redissolution process, it's not actually doing the separation on the basis of the size of the particle, it's doing it on the basis of the solubility," said Greytak. "So if you have impurities that have solubility qualities similar to those of the particle, they aren't removed."

Gel-permeation chromatography

Greytak directed his team, which included graduate students Yi Shen, Megan Gee and Rui Tan, in developing GPC as a highly effective alternative. A size-exclusion technique, GPC separates chemical species according to molecular weight and is commonly used with macromolecules.

Compared with materials prepared through the precipitation and re-solvation process, the GPC-purified quantum dots had better stability at high temperature. Moreover, a series of NMR measurements assisted by USC research associate professor Perry Pellechia indicated that the GPC method was much more effective in removing weakly adsorbed ligands from the quantum dot surface.

Carrying a synthetic process forward

The team further examined the suitability of the quantum dots for further synthetic manipulation. Again, the GPC-purified products were superior, both in CdS shell growth on CdSe quantum dots as well as ligand exchange of cysteine on CdSe/CdxZn1-xS quantum dots.

Greytak sees the method as a fundamental step forward in being able to further manipulate quantum dots, whether in constructing larger architectures or asserting control over how the nanocrystal colloids behave in solution.

"What we like to say is that we're developing a sequential, preparative chemistry for semiconductor nanocrystals," said Greytak. "In most synthetic chemistry, you have a starting material, you do a reaction, and you proceed through a series of intermediates with well-defined structures that can be isolated. For a nanomaterial, it's much more difficult, because we're not making molecules, we're making a population of particles that has, let's say, a radius of two nanometers. They aren't all identical, and achieving a consistent product has been challenging, both in terms of how to isolate it and characterize it.

"So we're really working toward being able to characterize a sample, with, say NMR and thermogravimetric analysis, and being able to really predict with confidence how it's going to react in a subsequent step."

####

For more information, please click here

Contacts:
Steven Powell

803-777-1923

Copyright © University of South Carolina

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Arrowhead to Present at BioCentury's NewsMakers in the Biotech Industry Conference September 19th, 2014

SouthWest NanoTechnologies (SWeNT) Receives NIST Small Business Innovation Research (SBIR) Phase 1 Award to Produce Greater than 99% Semiconducting Single-Wall Carbon Nanotubes September 19th, 2014

Toward optical chips: A promising light source for optoelectronic chips can be tuned to different frequencies September 19th, 2014

New research points to graphene as a flexible, low-cost touchscreen solution September 19th, 2014

The Pocket Project will develop a low-cost and accurate point-of-care test to diagnose Tuberculosis: ICN2 holds a follow-up meeting of the Project on September 18th - 19th September 18th, 2014

Display technology/LEDs/SS Lighting/OLEDs

New research points to graphene as a flexible, low-cost touchscreen solution September 19th, 2014

IEEE International Electron Devices Meeting To Celebrate 60th Anniversary as The Leading Technical Conference for Advanced Semiconductor Devices September 18th, 2014

Copper shines as flexible conductor August 29th, 2014

Chemistry

Development of Algorithm for Accurate Calculation of Average Distance Travelled by Low-Speed Electrons without Energy Loss that Are Sensitive to Surface Structure September 11th, 2014

Rice chemist wins rare NSF Special Creativity Award: Grant extension will bolster Zubarev's effort to produce gold nanorods September 8th, 2014

Iranian, Spanish Scientists Produce Recyclable Catalyst by Using Nanoparticles September 3rd, 2014

Discoveries

Toward optical chips: A promising light source for optoelectronic chips can be tuned to different frequencies September 19th, 2014

New research points to graphene as a flexible, low-cost touchscreen solution September 19th, 2014

CiQUS researchers design an artificial nose to detect DNA differentiation with single nucleotide resolution September 18th, 2014

Big Results Require Big Ambitions: Three young UCSB faculty receive CAREER awards from the National Science Foundation September 18th, 2014

Announcements

Arrowhead to Present at BioCentury's NewsMakers in the Biotech Industry Conference September 19th, 2014

SouthWest NanoTechnologies (SWeNT) Receives NIST Small Business Innovation Research (SBIR) Phase 1 Award to Produce Greater than 99% Semiconducting Single-Wall Carbon Nanotubes September 19th, 2014

Toward optical chips: A promising light source for optoelectronic chips can be tuned to different frequencies September 19th, 2014

New research points to graphene as a flexible, low-cost touchscreen solution September 19th, 2014

Energy

IEEE International Electron Devices Meeting To Celebrate 60th Anniversary as The Leading Technical Conference for Advanced Semiconductor Devices September 18th, 2014

Rice rolls 'neat' nanotube fibers: Rice University researchers' acid-free approach leads to strong conductive carbon threads September 15th, 2014

Simple, Cost-Effective Method Proposed for Synthesizing Zinc Oxide Nanopigments September 15th, 2014

UT Arlington research uses nanotechnology to help cool electrons with no external sources September 11th, 2014

Quantum Dots/Rods

Nano-pea pod model widens electronics applications: A new theoretical model explains how a nanostructure, such as the nano-pea pod, can exhibit localised electrons September 4th, 2014

Interaction between Drug, DNA for Designing Anticancer Drugs Studied in Iran August 17th, 2014

NANOPARTICLES INDIA August 8th, 2014

Researchers create quantum dots with single-atom precision June 30th, 2014

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More














ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2014 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE